Hatem Elias Khalloof, M.Sc.
- Wissenschaftlicher Mitarbeiter
Fachgebiet IT-Methoden und -Komponenten für smarte Infrastrukturen (IT4SI)
Gruppe IT-Methoden und -Komponenten für Energiesysteme (IT4ES)
258
CN 449+49 721 608-24123
hatem khalloof ∂does-not-exist.kit edu
Karlsruher Institut für Technologie (KIT)
Institut für Automation und angewandte Informatik (IAI)Hermann-von-Helmholtz-Platz 1
76344 Eggenstein-LeopoldshafenFax: +49 721 608 22602
Gebäude-Nr.: 445 / 449 / 668
Publikationen
2022
Dynamic Optimization of Energy Hubs with Evolutionary Algorithms Using Adaptive Time Segments and Varying Resolution
Poppenborg, R.; Khalloof, H.; Chlosta, M.; Hofferberth, T.; Düpmeier, C.; Hagenmeyer, V.
2022. Intelligent Data Engineering and Automated Learning – IDEAL 2022 : 23rd International Conference, IDEAL 2022, Manchester, UK, November 24–26, 2022, Proceedings. Ed.: H. Yin, 513–524, Springer International Publishing. doi:10.1007/978-3-031-21753-1_50
Poppenborg, R.; Khalloof, H.; Chlosta, M.; Hofferberth, T.; Düpmeier, C.; Hagenmeyer, V.
2022. Intelligent Data Engineering and Automated Learning – IDEAL 2022 : 23rd International Conference, IDEAL 2022, Manchester, UK, November 24–26, 2022, Proceedings. Ed.: H. Yin, 513–524, Springer International Publishing. doi:10.1007/978-3-031-21753-1_50
Fast Grid State Estimation for Power Networks: An Ensemble Machine Learning Approach
Shahoud, S.; Khalloof, H.; Khalouf, R.; Düpmeier, C.; Cakmak, H. K.; Forderer, K.; Hagenmeyer, V.
2022. 2022 IEEE 10th International Conference on Smart Energy Grid Engineering (SEGE), 12–18, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/SEGE55279.2022.9889763
Shahoud, S.; Khalloof, H.; Khalouf, R.; Düpmeier, C.; Cakmak, H. K.; Forderer, K.; Hagenmeyer, V.
2022. 2022 IEEE 10th International Conference on Smart Energy Grid Engineering (SEGE), 12–18, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/SEGE55279.2022.9889763
Facilitating the hybridization of parallel evolutionary algorithms in cluster computing environments
Khalloof, H.; Ciftci, S.; Shahoud, S.; Duepmeier, C.; Foerderer, K.; Hagenmeyer, V.
2022. GECCO ’22: Proceedings of the Genetic and Evolutionary Computation Conference Companion. Ed.: J. E. Fieldsend, 2001–2008, Association for Computing Machinery (ACM). doi:10.1145/3520304.3533997
Khalloof, H.; Ciftci, S.; Shahoud, S.; Duepmeier, C.; Foerderer, K.; Hagenmeyer, V.
2022. GECCO ’22: Proceedings of the Genetic and Evolutionary Computation Conference Companion. Ed.: J. E. Fieldsend, 2001–2008, Association for Computing Machinery (ACM). doi:10.1145/3520304.3533997
2021
A generic flexible and scalable framework for hierarchical parallelization of population-based metaheuristics
Khalloof, H.; Mohammad, M.; Shahoud, S.; Duepmeier, C.; Hagenmeyer, V.
2021. Internet of Things, 16, Art.-Nr. 100433. doi:10.1016/j.iot.2021.100433
Khalloof, H.; Mohammad, M.; Shahoud, S.; Duepmeier, C.; Hagenmeyer, V.
2021. Internet of Things, 16, Art.-Nr. 100433. doi:10.1016/j.iot.2021.100433
An extended Meta Learning Approach for Automating Model Selection in Big Data Environments using Microservice and Container Virtualizationz Technologies
Shahoud, S.; Winter, M.; Khalloof, H.; Duepmeier, C.; Hagenmeyer, V.
2021. Internet of Things (Netherlands), 16, Art.Nr. 100432. doi:10.1016/j.iot.2021.100432
Shahoud, S.; Winter, M.; Khalloof, H.; Duepmeier, C.; Hagenmeyer, V.
2021. Internet of Things (Netherlands), 16, Art.Nr. 100432. doi:10.1016/j.iot.2021.100432
A Generic Scalable Method for Scheduling Distributed Energy Resources Using Parallelized Population-Based Metaheuristics
Khalloof, H.; Jakob, W.; Shahoud, S.; Duepmeier, C.; Hagenmeyer, V.
2021. Proceedings of the Future Technologies Conference (FTC) 2020, Volume 2. Ed.: K. Arai, 1–21, Springer Nature. doi:10.1007/978-3-030-63089-8_1
Khalloof, H.; Jakob, W.; Shahoud, S.; Duepmeier, C.; Hagenmeyer, V.
2021. Proceedings of the Future Technologies Conference (FTC) 2020, Volume 2. Ed.: K. Arai, 1–21, Springer Nature. doi:10.1007/978-3-030-63089-8_1
Incorporating Unsupervised Deep Learning into Meta Learning for Energy Time Series Forecasting
Shahoud, S.; Khalloof, H.; Duepmeier, C.; Hagenmeyer, V.
2021. Proceedings of the Future Technologies Conference (FTC) 2020, Volume 1. Ed.: K. Arai, 326–345, Springer Nature. doi:10.1007/978-3-030-63128-4_25
Shahoud, S.; Khalloof, H.; Duepmeier, C.; Hagenmeyer, V.
2021. Proceedings of the Future Technologies Conference (FTC) 2020, Volume 1. Ed.: K. Arai, 326–345, Springer Nature. doi:10.1007/978-3-030-63128-4_25
2020
A Generic Flexible and Scalable Framework for Hierarchical Parallelization of Population-Based Metaheuristics
Khalloof, H.; Mohammad, M.; Shahoud, S.; Duepmeier, C.; Hagenmeyer, V.
2020. Proceedings of the 12th International Conference on Management of Digital EcoSystems (MEDES’20), 2nd - 4th November 2020, Online. Ed.: Richard Chbeir, 124–131, Association for Computing Machinery (ACM). doi:10.1145/3415958.3433041
Khalloof, H.; Mohammad, M.; Shahoud, S.; Duepmeier, C.; Hagenmeyer, V.
2020. Proceedings of the 12th International Conference on Management of Digital EcoSystems (MEDES’20), 2nd - 4th November 2020, Online. Ed.: Richard Chbeir, 124–131, Association for Computing Machinery (ACM). doi:10.1145/3415958.3433041
A Scalable Method for Scheduling Distributed Energy Resources using Parallelized Population-based Metaheuristics
Khalloof, H.; Jakob, W.; Shadoud, S.; Duepmeier, C.; Hagenmeyer, V.
2020
Khalloof, H.; Jakob, W.; Shadoud, S.; Duepmeier, C.; Hagenmeyer, V.
2020
A distributed modular scalable and generic framework for parallelizing population-based metaheuristics
Khalloof, H.; Ostheimer, P.; Jakob, W.; Shahoud, S.; Duepmeier, C.; Hagenmeyer, V.
2020. Parallel Processing and Applied Mathematics : 13th International Conference, PPAM 2019, Bialystok, Poland, September 8–11, 2019, Revised Selected Papers, Part I. Ed: R. Wyrzykowski, 432–444, Springer. doi:10.1007/978-3-030-43229-4_37
Khalloof, H.; Ostheimer, P.; Jakob, W.; Shahoud, S.; Duepmeier, C.; Hagenmeyer, V.
2020. Parallel Processing and Applied Mathematics : 13th International Conference, PPAM 2019, Bialystok, Poland, September 8–11, 2019, Revised Selected Papers, Part I. Ed: R. Wyrzykowski, 432–444, Springer. doi:10.1007/978-3-030-43229-4_37
Descriptive Statistics Time-based Meta Features (DSTMF): Constructing a better Set of Meta Features for Model Selection in Energy Time Series Forecasting
Shahoud, S.; Khalloof, H.; Duepmeier, C.; Hagenmeyer, V.
2020. APPIS 2020: Proceedings of the 3rd International Conference on Applications of Intelligent Systems. Ed.: N. Petkov, 3378221, Association for Computing Machinery (ACM). doi:10.1145/3378184.3378221
Shahoud, S.; Khalloof, H.; Duepmeier, C.; Hagenmeyer, V.
2020. APPIS 2020: Proceedings of the 3rd International Conference on Applications of Intelligent Systems. Ed.: N. Petkov, 3378221, Association for Computing Machinery (ACM). doi:10.1145/3378184.3378221
2019
Facilitating and Managing Machine Learning and Data Analysis Tasks in Big Data Environments using Web and Microservice Technologies
Shahoud, S.; Gunnarsdottir, S.; Khalloof, H.; Düpmeier, C.; Hagenmeyer, V.
2019. 11th International Conference on Management of Digital EcoSystems, MEDES. doi:10.1145/3297662.3365807
Shahoud, S.; Gunnarsdottir, S.; Khalloof, H.; Düpmeier, C.; Hagenmeyer, V.
2019. 11th International Conference on Management of Digital EcoSystems, MEDES. doi:10.1145/3297662.3365807
Superlinear Speedup of Parallel Population-Based Metaheuristics: A Microservices and Container Virtualization Approach
Khalloof, H.; Ostheimer, P.; Jakob, W.; Shahoud, S.; Düpmeier, C.; Hagenmeyer, V.
2019. Intelligent Data Engineering and Automated Learning. Ed.: Hujun Yin, 386–393, Springer. doi:10.1007/978-3-030-33607-3_42
Khalloof, H.; Ostheimer, P.; Jakob, W.; Shahoud, S.; Düpmeier, C.; Hagenmeyer, V.
2019. Intelligent Data Engineering and Automated Learning. Ed.: Hujun Yin, 386–393, Springer. doi:10.1007/978-3-030-33607-3_42
A distributed Modular Scalable and Generic Framework for Parallelizing Population Based Metaheuristics
Khalloof, H.; Ostheimer, P.; Jakob, W.; Shahoud, S.; Duepmeier, C.; Hagenmeyer, V.
2019. 13th International Conference on Parallel Processing and Applied Mathematics (PPAM 2019), Bialystok, PL, September 8-11, 2019, Springer
Khalloof, H.; Ostheimer, P.; Jakob, W.; Shahoud, S.; Duepmeier, C.; Hagenmeyer, V.
2019. 13th International Conference on Parallel Processing and Applied Mathematics (PPAM 2019), Bialystok, PL, September 8-11, 2019, Springer
2018
A generic distributed microservices and container based framework for metaheuristic optimization
Khalloof, H.; Jakob, W.; Liu, J.; Braun, E.; Shahoud, S.; Duepmeier, C.; Hagenmeyer, V.
2018. Proceedings of the Genetic and Evolutionary Conference Companion, Kyoto, J, July 15-19, 2018, 1363–1370, Association for Computing Machinery (ACM). doi:10.1145/3205651.3208253
Khalloof, H.; Jakob, W.; Liu, J.; Braun, E.; Shahoud, S.; Duepmeier, C.; Hagenmeyer, V.
2018. Proceedings of the Genetic and Evolutionary Conference Companion, Kyoto, J, July 15-19, 2018, 1363–1370, Association for Computing Machinery (ACM). doi:10.1145/3205651.3208253