
occ 07-036

Annex E
(normative)

UML-to-GML application schema encoding rules

E.1 General concepts

The mapping from an ISO 19109 conformant UML Application Schema to the corresponding GML application
schema is based on a set of encoding rules. These encoding rules are compliant with the rules for GML
application schemas and are based on ISO 191 18.

The rules are derived from the rules for the GML model and syntax as described in Clauses 7 to21, especially
Clause 7. The encoding rules of ISO 19118:2005, Annex A, are used whenever possible and feasible.

The rules listed in this annex aim at an automatic mapping from an ISO 19109 and ISO/TS 19103 conformant
UML application schema to a GML application schema (in accordance with the rules defined in Clause 21). As a
result of this automation, the resulting GML application schema will not make full use of the capabilities of XML
and XML Schema, but will provide an XML implementation conformant to the ISO 19100 series of lnternational
Standards with a well-defined, predictable XML grammar.

These rules do not prescribe that all GML application schemas shall be generated by using these rules. All
schemas following the rules defined in Clause 21 are valid and conformant GML application schemas, whether
they are handcrafted, automatically derived from a UML application schema or produced by some other means.

The schema encoding rules are based on the general idea that the class definitions in the application schema are
mapped to type and element declarations in XML Schema, so that the objects in the instance model can be
mapped to corresponding element structures in the XML document.

E.2 Encoding rules

E.2.1 General encoding requirements

8.2.1.1 Applicationschemas

E.2.1.1.1 General (application schema, packages)

To be a valid input into the mapping the UML Application Schema shall conform to all of the following rules. See
ISO 191 18:2005, A.2.1, for additional requirements.

The UML Application Schema shallconform to the rules defined in ISO 19109 and ISO/TS 19103.

The UML Application Schema shall be represented by a package with the stereotype <<Application Schema>>.
This package shall contain (i.e. own directly or indirectly) all UML model elements to be mapped to object types in
the GML application schema. The package may include other packages without the stereotype <<Application
Schema>> to group the different UML model elements within the application schema.

The UML model shall be complete and not contain external references unless exceptions are explicitly stated
below. Predefined classes may be imported from the standardized schemas of the ISO 19100 series of

Copyright @ 2007 Open Geospatial Consortium, lnc. All Rights Reserved. 335

occ 07-036

lnternational standards. The classes from the lso 1g100 series of lnternational standards that are implemented

by the GML schema and used by the Utr¡t- appñcaion schema shall be specified in a package with the name

;;l'sot sr oo" or any sub-package of a package with that name'

Dependencies between packages shall .be modelled explicifly. Permission elements with stereotype <<import>>

or unspecified dependency elements ¡etween-pãðiãg". snati.be used to express the dependency of elements in

a package from elements in anotner package. nfiotnãr dependency elements shall be ignored' see Figure E'1'

Figure 8.1- Dependency between packages <informative>

The visibitity of all uML elements shall be set to "public". only publicly visible elements shall be part of Application

Schemas uied for data interchange between applications'

Documentation of the elements in the uML model shall be stored in tagged values "documentation"'

A unique XML namespace shall be associated with the uML Application schema' Tagged values

,,targetNamespace,, for the target namesp""" Ùni and "xmlns" for the abbreviation shall be set if and only if the

package represents a UML application schema'

The version number of a package representing a uML Application schema shall be specified in a tagged value

"version", if aPPlicable.

A GML profile may be associated with the application schema by a tagged value "gmlProfileSchema"' lf provided'

in" uåluå shall be a URL referencing the schema location of the GML profile'

lf a package shall be mapped to its own XML schema document, a tagged value "xsdDocLlment" shall be set

providing a valid relative i¡i" nam" of the schema document. The taggeï value shall be set for every package

representing the uML Áppli*ti". échema. Ail tagged values "xsdDocument" in a UML model shall be unique'

EXAMpLE The value of an ,,xsdDocument" tagged value might be "GeodeticPoints.xsd" or "schemas/Parcels'xsd"'

8.2.1.1.2 Glasses

All class names within the same Apprication schema shall be unique and an "NCName" as defined by w3c XML

Namespaces:1 999.

Feature types shall be modelled as UML classes with stereotype <<FeatureTypet>' see Figure E'2'

NOTEl Neither lso1910g nor lso1911g:2005, AnnexA, distinguishes between feature types and object types -
lso 19109 only considers feature types while rso rgila:ioos, AnnexÃ, classifies all feature types as objecttypes' However,

<<Application Schema>>
Parcels

<<LeaÞ>
Buildings

<<Application Schema>>

Geodellu Polnts

336 Copyright @ 2007 Open Geospat¡al Consortium, lnc' All Rights Reserved

)

occ 07-036

the distinction is meaningful in GML and in practice often required in application schemas. The distinction made in this annex
is a conformant refinement of ISO 19'l 18:2005, Annex A.

Figure 8.2 - A feature type <informat¡ve>

Object types shall be modelled as UML classes with no stereotype. Object types are types where the instances
shall have an identity, but which are not feature typeslo).

EXAMPLE Examples of such types are geometries, topologies, reference systems. lnstances of these types may have,
for example, a name and an identifier.

UML classes with stereotype <<Type>> may have zero or more operations (these are not mapped to the GML
application schema), attributes or associations.

The stereotype <<Abstract>> shall not be used in an Application Schema, because its use may be inconsistent
with the use of correct UML notation, and thus misleading.

All instantiable subtypes of abstract types shall be either feature types, object types or data types.

Enumerations shall be modelled as UML classes with stereotype <<Enumeration>>

Code lists shall be modelled as UML classes with stereotype <<Codelist>>, see Figure E.3.

Figure E.3 - A code list <informative>

Union types shallbe modelled as UML classes with stereotype <<Union>> (as specified in ISO 19107).

All other data types shall be modelled as UML classes with stereotype <<DataType>>, see Figure E.4.

10) Object types are not considered explicitly in ISO 191 09:2005. They appear only as value types of property types.

)

<<FeatureTyps>>
Building

+ extent: GM_Surface
+ addrsss : Addr€ss
+ type: BuildingType

<<CodeLisÞ>
ParcelUsage

+ fiactory = I
+ road =2
+ rosidential = 3
+ offices = 4
+ sea, river = 5
+ ...

Copyright @ 2007 Open Geospatial Consortium, lnc. All Rights Reserved. 337

Figure E.4 - A data type <informative>

uML classes of the lso 1g100 series of lnternational standards that are part of the GML profile and for which a

GML base type has been provided in Table D.2 in the "GML type" colutn may be subclassed in the UML

application schema. ln it',i s:unclasses, additionnlptòp"tt¡"s may'be added or properties of the subtype may be

reåefined with a restricted multiplicity or domain of values'

NOTE 2 Although redefinition of properties is supported, these redefined properties will be ignored in the conversion rules

and it is the responsibitity of the apptication t" ";;';it
iñ; constraints introducäd by the redefinition All classes with other

stereotypes than those mãntioned
"bòue

may Oe pãrtóttn" UU¡ Application Schema, butwill be ignored'

NoTE3WhenanApplicationSchemareferstotypesdefinedbyotherstandardsofthelsolgl00serieswhichare
implemented by the GML'schema, then the class nameî should match one of those listed in the first column of Table D'2'

A generalrzation rêlatlonship nray be specified only betwcen two classes that are either:

occ 07-036

<<DataTypP>
ParcelName

+ countryld : CharacbrSting
+ stateld : CharacterSÍing
+ municipalityld : Charac-terSûing
+ parcelldPrefix : Charac{erSting
+ parcelldsuffilx : Charac{srsting

both feature tYPes,

both object tYPes, or

both data types.

All generalization relationships between clas.ses shall have no stereotype' All generalization relationships with

other stereotypes witt nãìgï;ã¿. iÀe O¡scriminãtor property of the UML generalization shall be blank'

lf a class is a specialization of another class, then this class shall have only one supertype (no support for multiple

inheritance).

Ail crasses shail have a stereotype specifying the meaning of the crass. crasses without a stereotype are treated

as object tyPes, see Figure E.5.

<<FeatureTypÞ>
LandClasslflætlon

+ featureMetadata : MD-Metadata
+ €xtsnt: GM-Surface

<<FeatureType>>
Lake

<<FeatureTyPe>>
Forest

+ depth [0..1 Lengtt+ ForestTypeEnumeration

338 Copyright @ 2007 Open Geospatial Consortium, lnc All Rights Reserved'

occ 07-036

Figure E.5 - Generalization relationship between feature types <informative>

E.2.1.1.3 Attributes

Every UML attribute of an abstract type, feature type, object type, data type or union type shall have a name and
a type. The name shall be an "NCName" as defined by W3C XML Namespaces:1999. lf its multiplicity is not "1",

the multiplicity shall be specified explicitly. An initial value may be specified for attributes with a number, string or
enumeration type.

The type shall either be a predefined type (see E.2.1.1.5) or a class defined in the UML model.

Every UML attribute of an enumeration class shall have a name. The type information is left empty. No multiplicity,
ordering or initial value information shall be attached to the attribute.

Every UML attribute of a code list class shall have a name. The type information is left empty. No multiplicity or
ordering information shall be attached to the attribute. An initial value may be specified to document a code for the
code list value. lf it is omitted, the value (i.e. the attribute name) is used as the code.

The properties of a UML class are not ordered. To support the consistent ordering of the properties from the UML
model in the conversion to XML Schema, a tagged value "sequenceNumber" (value domain: integer) shall be
specified for every attribute. The value shall be unique for all attributes and association ends of a class.

8.2.1.1.4 Associations and association ends

Every UML association shall be an association with exactly two association ends. Both association ends shall
connect to a feature, object or data type and shall have no stereotype or the stereotype <<association>>
(otherwise the whole association will be ignored).

An association shall not contain any properties

The rules for association ends are:

lf an association end is navigable it shall be marked as such and shall have a rolename. An association end
with no name shall be ignored, even if it marked as navigable. lf a name is provided, it shall be an "NCName"
as defined by W3C XML Namespaces:1999.

The multiplicity shall be given explicitly

The aggregation kind shall be specified explicitly if it is not "none'.

lf the target class of an association end is a data type, then the aggregation kind shall be "composition".

Figure E.6 shows two example associations; one association is navigable in both directions and the other is an
aggregation which is navigable in one direction only.

Copyright @ 2007 Open Geospatial Consort¡um, lnc. All Rights Reserved. 339

occ 07-036

+owns 0..

+(Mner

+hasBu¡lding

0..'

Figure E.6 - Associations <informative>

The properties of a uML class are not ordered. To support the consistent ordering of the properties from the UML

model in the conversion to xML Schema, a iagged'vaiüe "seque.ncelJurnber" ("'alue domain: integer) shall be

specified for every association end. The uarue rÀäi be unique foi all attributes and association ends of a class'

Exchange metadata may be specified for every feature or feature collection in a GML instance document by

specifying in the application schema próperty elements whose content model is derived from

,,qml :AbstractMetadataPropertyType" âS described inÊ.2.4.11 andÊ"2.4'13.

No specific schema for the exchange metadata is added to the GML application schema'

8.2.1.1.5 Preclefined tYPes

The predefined types from lso/TS 19103 listed in 8.2.4.4 are treated as "basic types" in the sense of

tso 191 18:2005, Annex A (i.e. a canonical XML Encoding is attached to them)'

Ê..2.1.1.6 OGL constraints

All ocL constraints are ignored. The assessment of the validity of the instance model with respect to these

constraints is the task of thl application processing the GML instances'

NOTE The schematron language may be used to express ocL constraints as part of the XML schema representing the

GML application schema.

8.2.1.1.7 Otherinformation

All other information in the uML Application schema is not used in the encoding rules and is ignored

8.2.1.2 Gharacter repertoire and languages

"UTF-8, or'UTF-16,, shall be used as the character encoding of the XML Schema files (with the associated

character repertoire) in accordance with XML'

E.2.1.3 Exchange metadata

<<FeatureTYPe>>
Building<<FeatureTYpe>>

Parcel

+ area: Af€a
+ extont: GM-Surfacê

+ oxt€nt: GM-Surface
+ address : Addr€ss
+ type: BuildingType_

<<FeatureTYPe>>
P€rson

+ firstNam€ : CharacteÉting
+ lastNamo : CharactarSting

340 Copyright @ 2007 Open Geospatial Consortium, lnc All Rights Reserved

oGc 07-036

8.2.1.4 Dataset and object identification

Unique identifiers in accordance with XML's lD mechanism are used to identify objects.

NOTE The XML lD mechanism only requires that these identifiers are unique identifiers within the XML document in

which they appear.

8.2.1.5 Updatemechanism

No explicit update mechanism is defined for the features defined in the GML application schema. lt is assumed
that other mechanisms are used to update a data store.

NOTE An example is the "Transaction" operation of the OpenGlS@ Web Feature Service lmplementation Specification.

E.2.2 lnput data structure

See ISO 191 l8:2005, 4.3, for a description of the input data structure.

E.2.3 Output data structure

This encoding rule is based on the XML Recommendation 1.0 and the XML Linking Language (Xlink) Version 1.0
The schema for the output data structure that governs the structure of the exchange format shall be a (set o0 valid
XML Schema(s) in accordance with XML Schema 1.0 and the Rules for Application Schemas (see Clause 21).

The XML Schema conversion rules are defined in the following Subclause

E.2.4 Gonvers¡on rules

8.2.4.1 Generalconcepts

The schema conversion rules define how XML Schema documents (XSDs) shall be derived from an application
schema expressed in UML in accordance with ISO 19109. A number of general rules are defined in E.2.4lo
describe the mapping from a UML model that follows the guidelines described in 8.2.1.

NOTE ln this annex the namespace "xsd:" is used to refer to the namespace of XML Schema, which is
"http://www.w3.org/2001D(MLSchema". The namespace "gml:" refers to the namespace of GML, which is
"http ://www.opengis. neVgml/3.2".

The rules are based on the GML model and syntax as described in Clauses 7 lo 21 (especially Clauses 7, 9
and 21) and also on the encoding rules of ISO 191 18:2005, Annex A.

The schema encoding rules are based on the general idea that the class definitions in the UML application
schema are mapped to type and element declarations in XML Schema, so that the objects in the instance model
can be mapped to corresponding element structures in the XML document.

Table E.1 gives an overview.

Copyright O 2007 Open Geospatial Consortium, lnc. All Rights Reserved. 341

occ 07-036

Table E.1 - Schema encoding overview

NoTE<<FeatureType>>isanewstereotypewhichdoesnotappearinlso/TS19103orlso19109,andisusedto
indicate that the type is a reat¡zat¡on of GF-FeatúieType and a specialization from AbstractFeature'

The multiplicity of attributes and association roles is mapped to "minoccurs" and "maxoccurs" attributes in

<xsd:element> declarations. The detailed mapping rules are described below'

For different uML model elements, different tagged values are used to control the mapping from UML to XML

Schema.ThefollowingTableE.2providesalistofthesetaggedvalues.

Table: UML à GML application schema overview

GML application schema
UML application schema

one XML Schema document per package (default mapping)
Package

XML Schema document<<Application Schema>>

Global element, whose content model is a globally scoped XML

complexType, ProPertY tYPe

Schema
<<DataType>>

Restriction of xsd:string with enumeration values<<Enumeration>>

Union of an enumeration and a pattern (default mapping' an alternative maPPing is

a reference to a dictionarY)<<CodeList>>

ChoicegroupwhosemembersareGMLobjectsorfeattlres,orobjects
corresponding to DataTYPes<<Union>>

SXML mache petymodelnt ts scopedosewh conte loballyselement,Global
typeofn Type'AbstractFeature propertyrect oextensirecUind gmdderived by<<FeatureTyPe>>

SchemXML typeodelm ats scopedcontent lyglobalent whoseobaGI elem
typeof Type,m!:AbstraetGML Droperty¡l ñ9¡¡.^^r/in¡li¡au[9vv lr rwlleuct tvÉu uyNñ qfêrêôtvne or <<TvDe>>

Not encodedOperations

local xsd:element, the type is either a property type (if the type is a com plex typc)

or a simplc tYPe.Attribute

local xsd:element, the type is always a property type (only named and navigable

roles)Association role

Not encodedGeneral OCL constraints

342 Copyright @ 2007 Open Geospatial Consortium, lnc All Rights Reserved

occ 07-036

Table E.2 - Tagged values

UML model element Associated tagged values

Package

documentation

xsdDocument

targetNamespace (only <<Application Schema>>)

xmlns (only <<Application Schema>>)

version (only <<Application Schema>>)

gmlProfileSchema (only <<Application Schema>>)

Class

documentation

noPropertyType

byValuePropertyType

isCollection

asDictionary (only <<CodeList>>)

xmlSchemaType (only <<Type>t)

Attribute and association end

documentation

sequenceNumber

inlineOrByReference

isMetadata

8.2.4.2 UML packages

One XML Schema document is generated per package with the tagged value "xsdDocument" with the file name
specified by the tagged value.

lf the tagged value "xsdDocument" is set for a package, then the schema document contains all the XML Schema
components resulting from the UML classes directly owned by the package. lf the package is not a UML
application schema, the schema document shall be included by the schema document that contains the schema
components of the package that owns that package.

lf the tagged value "xsdDocument" is not set for a package, all schema components are declared in the schema
document that contains the schema components of the package that owns that package.

NOTE The tagged value is mandatory for all packages with the stereotype <<Application Schema>>, but optional for all
other packages.

For every schema document, the "targetNamespace" and the "version" attributes of the root element shall be set
in accordance with the tagged values of the same name in the package representing the UML Application
Schema that owns the schema components within the schema document; if the "version" tagged value is not
specified, the value "unknown" shall be used. ln addition an "xmlns" attribute shall be specified for the target
namespace with the value of the tagged value "xmlns" as the abbreviation.

EXAMPLE 1 "http://www.myorg.com/myns" may be a target namespace and "myns" may be the associated abbreviation
used in the schema documents.

For every tagged value "gmlProfileSchema" of a package with the stereotype <<Application Schema>>, an
element <gml:gmlProfileSchema> with the content of the tagged value shall be created in an appinfo annotation
of the <schema> element as specified in 20.5.

Copyr¡ght O 2007 Open Geospatial Consortium, lnc. All Rights Reserved 343

occ 07-036

The dependencies between the packages shail be used to determine the required imports of other schemas and

additional includes of other schema documents:

lf the schema components specified by the target package of the dependency relationship are in the same

target namerp"""'ã. those'of tne supptìãr pãÀr,ig", thän the schéma document specifying the schema

càñrponents of the target package is "included"'

otherwise the schema document representing the uML Application schema package that contains the target

package is "imPorted".

EXAMPLE 2 Mapping the information from Figure E'1 may result in:

<?xmI version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://www.myorg.com/parcels" xmlns="http://www w3'org/2001/XMLSchema"

xmlns:gml="http:llwww.ople-ngis ;àvgmu¡ z' xñrlns:gp="¡1þ://www myorg'com/geodeticPoints"

xmtns:pct=,,http,¡l***.ríà',gÌ;;/ó;;;i;,1 "mlns:isä191
15="http://www-'iso-tc211'ors/iso191 15/"

xmlns:xlink="http:tiwww.wã.ËróJf öäSl*l¡nL" elementFormDslsu¡i="qualified" version="2003-07-20">

<include schemaLocation="Buildings xsd"/>
<import nrr".p"."=înüp,ll***.rîorg.com/geodeticPoints" schemaLocation="GeodeticPoints'xsd"/>

<import n"r"rp"."="hìõ,;/*il.;ônõ¡s.neV-gmYe.2" schemaLocation="base/gml'xsd"/>

<!- ...
</schema>

NOTE

EXAMPLE

Ê..2.4.3 UML classes (gencral rulee)

Recognized stereotypes for uML classes are: no stereotype, <<FeatureType>>, <<Tyfre>>, <<DataTypet>'

<<Union>>, <<Codelist>>, and <<Enumerat'ron>>' All clásses will be mápped to the corresponding class

"ut"goty.
Àtl Ulvlt- classes with other stereotypes will be ignored'

All UML classes shall have zero or one supertype'

All UML classes are mapped to named types' A suffix "Type" is added to the name of the type'

8.2.4.4 UML classes (basic tYPes)

The basic types from the GML profite of tso/Ts 19103 listed in the left column of rable D'2 (starting with

,'characterstring,,) are predefined and may be used as a data type of an attribute in an application schema

conforming to tso 19109. The mapping to
"

úr¡ñ-in type of XML Sòhema ("xsd:") or GML.("gml:") is specified' lf

multiple names are givãÀ in a ceil äi t'" ta¡r" tnen tré'name in bold typefaòe snalt ¡e used as the default type of

the maPPing.

Multiple values in the right column are used to support also the reverse mapping in Annex F

ISO/TS 19'l 03 lnteger maps to "xsd:integer"

lf a class with the stereotype <<Type>> has a canonical XML schema encoding (e'g' from XML Schema) the XML

Schema typename corresponding to the i;ä iyt" shall be given as
-the value of the tagged value

"xmlSchemaTYPe".

NorE canonical encodings may be preferred to structured encodings that follow the standard UML{o-GML encoding

rures in some cases, for example where a .orp""i stiucture based on "simplecontent" is already well known within the

application domain.

Ê..2.4.5 UML classes (data tYPes)

UML classes with stereotype <<DataType>> shall be mapped to XML Schema complex types'

344 Copyright @ 2007 Open Geospatial Consortium, lnc All Rights Reserved

occ 07-036

NOTE Data types with other stereogpes, i.e. <<Enumeration>>, <<CodeList>> and <<Union>>, and predeflned basic
types are treated differently. See E.2.4.4, E.2.4.8,8.2.4.9, and E.2.4.10.

lf the class has no supertype, it is a non-derived type in XML Schema; otherwise it extends its supertype which
shall not be derived from gmt:AbstractGMLType (directly or indirectly). Abstract superclasses without any

attribute or navigable association role are ignored.

Global XML elements with appropriate settings for name (name of the UML class), type (name of the UML class
plus "Type"), abstractness (if the class is abstract) and substitution groups (the qualified element name of the
superclass or gmt : Abstractob j ect, if the class has no superclass) shall be defined for these classes.

A named complex type shall be created for these classes (carrying the name of the class with a "PropertyType"
suffix), if the class does not carry a tagged value "noPropertyType" with the value "true". The type follows the
pattern for association properties as defined in GML (see 7.2.3), but without allowing Xlink attributes.

EXAMPLE The data type "ParcelName" from Figure E.4 may be mapped to:

<complexType name="ParcelNameType">
<sequence>

<element name="countryld" type="string"/>
<element name="stateld" type="string"/>
<element name="m unicipalityld" type="string"/>
<element n¿¡9="parcelldPrefix" type="string"/>
<element n¿¡¡g="parcelldSuffix" type="string" minOccurs="0"/>

</sequence>
</complexType>

<element name="parcelName" type="ex:ParcelNameType', substitutionGroup="gml:AbstractObject"i>
<complexType name="ParcelName PropertyType"t

<sequence>
<element ref="ex: ParcelName"/>

</sequence>
< attri b u te G ro u p ref= "g m l : Own e rs h ipAttrib u teG ro u p" />

</complexType>

E.2.4.6 UML classes (feature types)

UML classes with stereotype <<FeatureType>> derive directly or indirectly from gml:AbstractFeatureType. lf
the class is a class without supertype, it extends directly gml:AbstractFeaturerype; otherwise it extends its
supertype which shall be derived from gml : AbstractFeatureType (again, directly or indirectly).

Global XML elements with appropriate settings for name (name of the UML class), type (name of the UML
class plus "Type"), abstractness (true, if the class is abstract) and substitution group (the name of the

superclass or gml : AbstractFeature) are defined for these classes.

lf the class has a single association which is an aggregation or composition of a target class, the association
role is converted to a property element, and the class carries a tagged value "isCollection" with the value
"true", the attribute group gml:AggregationAttributeGroup is added to the complex type of the feature
type.

A named complex type shall be created for these classes (carrying the name of the class with a
"PropertyType" suffix), if the class does not catry a tagged value "noPropertyType" with the value "true". The
type follows the pattern for association properties as defined in GML (see 7.2.3).

Copyright @ 2007 Open Geospatial Consortium, lnc. All Rights Reserved. 345

occ 07-036

A named complex type shall be created for these classes (carrying the name of the class with a

"propertyByValuetypé'; suffix), if the class carries a tagged value "byValuePropertyType" with the value "true"

The'typé ii a profile of the pattern for association properties as defined in GML restricted to the "by value"

form (again, see 7.2.3).

EXAMPLE "Building" from Figure Ê.2 may be mapped to:

<complexType name="BuildingType">
<comp lexConte nt>

<extension 5¿ss="gml:AbstractFeatureType">
<sequence>

<element name=,,extent,, type="gml:SurfacePropertyType"/>
<element name="address" type="pcl:AddressPropertyType"/>
<element name=,'type,' type="pcl: BuildingTypeType"/>

</sequence>
</extension>

</com plexContent>
</complexType>

<complexType name="BuildingPropertyType">
<sequence minOccurs="0">

<êlêmênt ref="ncl Buildino"/>
</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>
<attributeGroup rcf="gm l: Ownero h ipAttrib uteGrou p" />

</complexType>

<complexType name="Building PropertyByValueType">
<sequence>

<element ¡sf=,'pcl: Bu ild ing"/>
</sequence>
< attrib ute G ro u p ref =" g m l : Own e rs h i pAttri b u teG ro u p " />

</complexType>

<element name="Building" type="pcl:BuildingType" substitutionGroup="gml:AbstractFeature"/>

E.2.4.7 UML classes (object types)

UML classes with no stereotype or stereotype <<Type>> derive directly or indirectly from

gmt:AbstractGMlType. lf the class is a class without supertype it extends directly gml:AbstractcMlType,
othen¡rise it extends its supertype which shall be derived from gml:AbstractGMlType (again, directly or

indirectly), but not from gml : AbstractFeatureType (again, directly or indirectly).

Global XML elements with appropriate settings for name (name of the UML class), type (name of the UML

class plus "Type"), abstractness (true, if the class is abstract) and substitution group (the name of the

supertype or "AbstractGML") are defined for these classes.

lf the class has a single association which is an aggregation or composition of a target class, the association
role is converted to a property element, and the class carries a tagged value "isCollection" with the value

"true", the attribute group gml:AggregationAttributeGroup is added to the complex type of the object type.

A named complex type shall be created for these classes (carrying the name of the class with a
"PropertyType" suffix), if the class does not carry a tagged value "noPropertyType" with the value "true". The
type follows the pattern for association properties as defined in GML (see 7.2.3).

A named complex type shall be created for these classes (carrying the name of the class with a

"PropertyByValueType" suffix), if the class carries a tagged value "byValuePropertyType" with the value "true"

346 Copyright O 2007 Open Geospatial Consortium, lnc. All Rights Reserved.

I

occ 07-036

The type is a profile of the pattern for association properties as defined in GML restricted to the "by value"
form (again, see 7.2.3).

EXAMPLE

<element name=,'Ellipse', type="ex:EllipseType" substitutionGroup="gml:AbstractcurveSegment"i>

<complexType name="EllipseType"t
<complexContent>

<extension 63ss="gm l:Abstract0urveSegmentType">
<sequence>

<element name=',center', type="gml: DirectpositionType"/>
<element name=',semiminor" type=,'gml:VectorType"/>
<element name="semimajor" type=,'gml:VectorType"/>

</sequence>
<iextension>

</complexContent>
<icomplexType>

8.2.4.8 UML classes (enumerations)

UML classes with stereotype <<Enumeration>> are mapped to XML Schema simple types. The base type is
"string", the domain of values is restricted to the set of literal values as specified by the attribute names of the
UML class.

EXAMPLE

<simpleType name="SignType">
<restriction base="string">

<enumeration value="-"/>
<enumeration value="+"/>

</restriction>
</simpleType>

Ê.2.4.9 UML classes (code lists)

A UML class with stereotype <<CodeList>> and without a tagged value "asDictionary" with the value "true" shall
be mapped like an enumeration, but with the following differences:

A facet "<pattern value='other: \w{2,}'/>" shall be added that allows for any text value beside the predefined
values; these free values are prefixed with "other: ".

lf a code is specified for a code list value, only the code shall be represented as an enumeration facet.

An encoded code value shall be qualified with an appinfo annotation with a gml:description element
specifying the text value of the enumerated value.

EXAMPLE 1 The code list "ParcelUsage" from Figure E.3 may be represented as:

<simpleType name="ParcelUsageType">
<union memberTypes="pcl:ParcelUsageEnumerationType pcl: ParcelUsageOtherType"/>

</simpleType>

<simpleType name="ParcelUsageEnumerationType">
<restriction base="string">

<enumeration value="1 ">

Copyright @ 2007 Open Geospatial Consortium, lnc. All Rights Reserved. 347

occ 07-036

<annotation>
<appinfo><gml:description>factory</gml'description></appinfo>

</annotation>
</enumeration>
<enumeration value="2">

<annotation>
<appinfo><gml:description >road</gml:description></appinfo>

</annotation>
</enumeration>
<enumeration value="3">

<annotat¡on>
<appinfo><gml:description>residential</9ml:description></appinfo>

</annotation>
</enumeration>
<enumeration value="4">

<annotation>
<appinfo><gml:description>offices</gml:description></appinfo>

</annotation>
</enumeration>
<enumeration value="5">

<annotation>
<appinfo><gml:description>sea, river</gm l:description></appinfo>

/r^^^^+Ã+i^ñ\! at il tvlauvr r-

<ienumeration>
</restriction>

</slmpleType>

<simpleType name="ParcelUsageOtherType">
<restriction base="string">

<pattern value="other: \w{2,}"/>
</restriction>

</simpleType>

Alternatively, if the class carries a tagged value "asDictionary" with the value "true", a gml : Dictionary shall be

used to represent a code list.

EXAMPLE 2 The code list "ParcelUsage" from Figure E.3 may be represented in a GML dictionary document as:

<gml:Dictionary gml:id="CodeList" xmlns:gml="http://www.opengis.neUgml/3.2
xñrlns:xsi=',httó:/www.w3.org/2001/XMLS;hema-instance" xsi:schemaLocation="http://www.opengis.neVgml/3.2 gml.xsd">

<gml:identifier codeSpace="http://www.someorg.de/cl.xml">My code lists</gml:identifier>
<gml:dictionaryEntry>

<gm l: Dictionary gm l: id="ParcelUsage">-
<gml:ideniifìer codeSpace="http://www.someorg.de/cl.xml">ParcelUsage</gml:identifier>
<gml:dictionaryEntry>

's'r:Ds"Jilål",:iiliÎ;,:"ïï!Yåi,Tå;lJ,,0,,".,
<gml:identifier codeSpace="http://www.someorg.de/cl.xml#ParcelUsage">'1 </gml:identifier>

</gml:Definition>
</gml:dictionarYEntry>
<gml:dictionaryEntry>

'n'' lf,J',1å':"J f il ii;,i$:;¿"ìXn"k?' i', ",.''<!ml:identifier codeSpace="http://www.someorg.de/cl.xml#ParcelUsage">2</gml:identifier>
</gml:Definition>

</gml:d ictionaryEntry>
<gml:dictionaryEntry>

's'r:?"Jir:ål",Xf il''"Î;5,1l:il"ìiË'Î;,.ription>
<õml:identifier codeSpace="http://www.someorg.de/cl.xml#ParcelUsage">3</gml:identifier>

</gml:Definition>

348 Copyright @ 2007 Open Geospatial Consortium, lnc. All Rights Reserued

occ 07-036

</gml:dictionaryEntry>
<gml:dictionaryEntry>

's'r;Dn"ji¡iåtloJrf; 'Ji;;i¿::lyr',ül;1J¡pt¡o.,
<gml:identifier codeSpace="http://www.someorg.de/cl.xml#ParcelUsage">4</gml:identifier>

</gml:Definition>
</gml:dictionaryEntry>
<gml:dictionaryEntry>

's'r:Ds"jilål",iril"JÍ;,:::i¡JYå?8i,r:'oå.,,0,,",,',
<gml:identifier codeSpace="http://www.someorg.de/cl.xml#ParcelUsage">5</gml:identifier>

</gml:Definition>
</gml:dictionaryEntry>

</gml:Dictionary>
</gml:dictionaryEntry>

</gml:Dictionary>

ln an instance document the reference would then be encoded (using grû1 : codeType as the content model, see 8.2.4.11) for
example as:

<usage codeSpace="http://www.someorg.de/example/cl.xml#ParcelUsage">1</usage>

The codeSpace attribute points to the dictionary, the value is the name of the entry in that dictionary.

The way a code list is encoded in a GML application schema also determines how property elements that carry
the code lists as its value domain shall be encoded; see 8.2.4.11.

8.2.4.10 UML classes (unions)

UML classes with stereotype <<Union>> are mapped as XML Schema complex types. These classes are mapped
like data types (see 8.2.4.5), but instead of a <xsd:sequence> of the properties, a <xsd:choice> is used so that
exactly one of the properties is specified in an instance of a union.

EXAMPLE

<complexType name="RemoteResourceType">
<choice>

< element name="name" type="string"/>
< element name="uri" type="anyURl"/>

</choice>
</complexType>

E.2.4.11 UML attributes and association roles

A UML attribute or association role of an object or feature type is mapped to a local element with the same name
in the complex type defining the content model of the object or feature type. The minOccurs and maxOccurs
attributes are set in accordance with the definitions in the UML model (see ISO 19118:2005, AnnexA, for details
of the mapping). The type depends on the type of the value of the property in UML:

lf the type of the value of the property is of simple content, then the type is used directly.

EXAMPLEl <elementname="count"type="integer'7>

lf the type of the value of the property is of complex content, then a property type shall be used. The default
encoding of the property type allows both the inline or by-reference representation for feature and object types
and the inline representation for data and union types. For feature and object types the representation may be
restricted to inline or by-reference using a tagged value "inlineOrByReference" with the values "inline" or

Copyr¡ght O 2007 Open Geospatial Consortium, lnc. All Rights Reserved. 349

occ 07-036

"byReference" respectively. lf the tagged value is missing or its value is "inlineOrByReference" the default
encoding shall be used.

lf an attribute or association role is a metadata property, then the property type shall extend
gmt:AbstractMetadataPropertyrype (see 7.2.6); a metadata property is a property with the tagged value
"isMetadata" with the value "trLre" or whose value is a class defined by ISO 19115:2003. lf an association role is

the target end of an aggregation or composition, then the property type shall extend gml : AbstractMemberType
(see 7.2,5.1) unless it is a metadata property. lf an association role is the target end of a composition or an object-
valued attribute, then the property element shall add a Schematron constraint that asserts that the owns attribute
of the gmt : ownershipAttributeGroup is "true". The Schematron constraint shall follow the following pattern:

<sch:pattern>
<sch:rule context="qual¡fied name of the object element">

<sch:report 1ss1="qualified property name/@owns='true"'>This property is a composition, values must be
owned</sch:report>

</sch:rule>
</sch:pattern>

EXAMPLE 2 For a property ex:representativeLocation of a feature type ex:MyFeature that controls the point object
describing the location this could be described as follows:

<element name=,'representativeLocation,'type=,,gml:pointPropertyType"t
<annotation>

<appinfo>
<sch:pattern">

<sch : rule context="ex: MyFeature">
<sch:report test="ex:representativeLocation/@owns='true"'>This property is a composition, values
m ust be owned</sch : report>

</sch:rule>
</sch:pattern>

</appinfo>
</annotation>

</element>

lf the property type is already specified in its application schema as a named type (this can be detected by
inspecting the tagged values "noPropertyType" and "byValuePropertyType"), this schema component shall be
referenced; otherwise, an anonymous property type shall be defined locally in the property element.

lf the encoded property is an association end and the other association end of the association is also encoded in
the GML application schema, the property name of the other association end shall be encoded in a
gmt : reversePropertyName element in an appinfo annotation of the property element (see 7.2.3.9).

EXAMPLE 3 By-reference or inline

<element name="owner" type="ex: Person PropertyType" minOccurs="0">
<annotation>

<appinfo>
<gml:reversePropertyName>ex:owns</gml: reversePropertyName>

</appinfo>
</annotation>

</element>

<complexType name="PersonPropertyType">
<sequence minOccurs="0">

<element ref="ex: Person"/>
</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>
< attri b u teG ro u p ref= "g m l : Own e rs h i pAttrib ute G ro u p " />

</complexType>

350 Copyright @ 2007 Open Geospatial Consortium, lnc. All Rights Reserved.

occ 07-036

0r

<element name="owner" minOccurs="0">
<annotation>

<appinfo>
<gm l:reversePropertyName>ex:owns</gml: reversePropertyName>

</appinfo>
</annotation>
<complexType>

<sequence minOccurs="0">
<element ref="ex: Person'7>

</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>

</complexType>
</element>

Alternatively, the property type may support only one of the representations, inline or by-reference, depending on
the tagged value "inlineOrByReference".

EXAMPLE 4 inline only:

<element name="owner" type="ex:PersonPropertyByValueType" minOccurs="O"/>

<co m p lexType n am e = " Pe rso n P ro pe rty ByVa l u eType">
<sequence>

<element ref="ex: Person"/>
</sequence>

</complexType>

or

<element name="owner" minOccurs="O">
<complexType>

<sequence>
<element ref="ex: Person"/>

</sequence>
</complexType>

</element>

lf only the by-reference representation is to be supported, then the property element shall be qualified with an
appinfo annotation element gml : targetElement specify¡ng the qualified element name of the target type.

<element name="targetElement" type="string"/>

lf the encoded property is an association end and the other association end of the association is also encoded in
the GML application schema, the property name of the other association end shall be encoded in another appinfo
annotation element gml : reversePropertyName specified above.

EXAMPLE 5 By-reference only:

<element name="owner" type="gml: ReferenceType" minOccurs="0">
<annotation>

<appinfo>
<gml:targetElement>ex: Person</gml:targetElement>
<gml:reversePropertyName>ex:owns</gml: reversePropertyName>

<iappinfo>
</annotation>

</element>

Copyright @ 2007 Open Geospatial Consortium, lnc. All Rights Reserved 351

occ 07-036

Depending on the encoding of the class, a UML attribute of a code list or enumeration type is mapped to an

element with either a string value (value domain: values of the enumeration or code list) or a value referencing the

corresponding dictionary entry. ln an instance, the dictionary may be explicitly referenced using the codeSpace
attribute. A default value for the URI representing the dictionary may be provided using an appinfo annotation
element gml : def auJ-tCodeSpace.

<element name="defaultCodeSpace" type="anyU Rl"/>

EXAMPLE 6 The code list "BuildingType" may be represented as:

<element name="type" type="ex: Bu ildingTypeType"/>

or

<element name=,'type,' type=',gml:CodeType">
<annotation>

<appinfo>
<gml:defaultCodeSpace>http://www.someorg.de/example/cl.xml#Build ingType</gml:defaultCodeSpace>

</appinfo>
</annotation>

</element>

lf a UML attribute or UML association role is redefined (i.e. a subclass contains an attribute or association role
with the same name as in a supertype) then this property is not part of the content model of the subtype. lt is the
responsibility of an application to assert the compliance of instances with such constraints expressed in the
conceptual model.

All attributes and association roles of a class shall be converted in the ascending sort order of the tagged value
"sequenceNumber".

Ê.2.4.12 Documentation

Tagged values "documentation" from elements in the UML model are mapped to annotation/documentation
elements in the XML Schema files.

EXAMPLE

<element name="curveproperty" type="gml:CurvePropertyType,'>
<annotation>

<documentation>This property element either references a curve via the XLink-attributes or contains the curve
element. curveProperty is the predefined property which can be used by GML application schemas whenever a GML feature
has a property with a value that is substitutable for AbstractCurve.</documentation>

</annotation>
</element>

8.2.4.13 Glasses imported from the ISO 19100 series of lnternational Standards

ln addition to the rules defined above, the following rules apply when the UML Application Schema imports
classes from the ISO 19100 series of lnternational Standards.

Classes from the ISO 19100 series of lnternational Standards that are implemented by the GML schema shall be
recognized. The use of classes from the ISO 19100 series of lnternational Standards shall be conformant with
ISO 19109. The mapping of the relevant classes from the ISO 19100 series of lnternational Standards is shown in

Table D.2.

352 Copyright @ 2007 Open Geospatial Consortium, lnc. All Rights Reserved

occ 07-036

lf a class from ISO 19115 and implemented in ISO/TS 19139 is used as the type of a property, then an
anonymous property type extending gml:AbstractMetadataPropertyType shall be defined. The encapsulated
object element is the corresponding object element for the metadata type as specified by ISO/TS 19139.

E.2.4.14 Classes imported from other conceptual models with a predefined XML encoding

ln addition to the rules defined above, the following rules apply when the UML Application Schema imports
classes from another UML modelforwhich a standard XML encoding has already been specified.

Extensions to Table D.2 for the imported classes shall be specified. The table shall be distributed together with the
application schema in UML.

The mapping of the relevant classes from the imported model to XML Schema is normatively specified by this
table.

E.3 Example <informative>

+hasBulldlng

0..'

+owns 0.-.

+owner <<CodeLisÞ>
CountryCode

+DE
+us
+cA
+...

Figure 8.7 - Example application schema

The application schema shown in Figure 8.7 may be encoded as

<?xmI version="1.0" encoding="UTF-8"?>

<<Featur€Typ€>>
Building<<FeafureType>>

Parcel

+ area : Alea
+ ext€nt: GM Surhce

+ extont:GM_Surface
+ address : Addr€ss
+ type : BuildingTyp€

<<FeafureType>>
Person

+ lirstName : Characbrstlng
+ lastName : CharacterSting

<<Enumeratlon>>
BuildingType

+ church
+ school
+ garage
+ r6sidential houses
+ unknown
+ mked

<<DataType>>
Addr€ss

+ street [0..11: CharacterSùing
+ housenumber [0..1] : Charactersting
+ poBox [0..1] : CharacterSbing
+ city : Characttorsbing
+ postaloode : Charactersûing
+ counlrv 10..'ll : CounbvOode = DE

<<Abstrac{>>
GM_CurueSegment

Elipse

+ cenler : DirectPosit¡on
+ semiminor :Vec'tor
+ somimajor :V€c,tcr

Copyright @ 2007 Open Geospatial Consortium, lnc. All Rights Reserved 353

occ 07-036

<schema targetNamespace="http://www.someorg.de/example" xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:ex="http://www.someorg.de/example" xmlns:gml="http://www.opengis.neVgml/3.2" elementFormgs¡¿tr¡1="qualified"
version="1.0">

.import namespace="http://www.opengis.neVgml/3.2" schemaLocation="./gml.xsd"/>
<import namespace="http://www.w3.org/1 999/xlink" schemaLocation="./xlinks.xsd"/>

.àlement name="Parcel" substitutionGroup="gml:AbstractFeature">
<complexType>

<complexOontent>
<extension 6¿ss="gml:AbstractFeatureType">

<sequence>
<element name="area" type=,,gml:AreaType"/>
<element name=,,extent,' type=,'gml:SurfacePropertyType"/>
<element name="owner" type="ex:PersonPropertyType" maxOccurs="unbounded">

<annotation>
<appinfo><gml:reverseProperty>ex:owns</gml:reverseProperty></appinfo>

</annotation>
</element>
<element name="hasBuilding" type="ex:BuildingPropertyType" minOccurs="0"

maxOccurs="unbounded"/>
</sequence>

¿/avfanoian:

</com plexContent>
</complexType>

</elenlent>
<complexType name="ParcelPropertyType">

<sequence minOccurs="0">

</sequence>
<attributeGroup ref="gm l:AssociationAttributeGroup"/>
<attributeGroup ref="gm l : Owners h ipAttributeGroup" />

</complexType>

<element name="Building', substitutionGroup=',gml:AbstractFeature,'>
<complexType>

<complexContent>
<extension 5¿ss="gm l:AbstractFeatureType">

<sequence>
<element name=,'extent', type=',gml:SurfacePropertyType"/>
<element name="address">

<complexType>
<sequence>

<element name="Address" type="ex:Add ressType"/>
</sequence>

</complexType>
</element>
<element name="type" type="ex: Build ingTypeType"/>

</sequence>
</extension>

</complexContent>
</complexType>

</element>
<complexType name="Building PropertyType">

<sequence minOccurs="0">
<element ref="ex: Building"/>

</sequence>
<attributeGroup ref="gm l:AssociationAttributeGroup"/>
<atkibuteGroup ref="gm l:OwnershipAttributeGroup" />

</complexType>

<element name="Person" substitutionGroup="gml:AbstractFeature">

354 Copyright @ 2007 Open Geospatial Consortium, lnc. All Rights Reserved

<complexType>
<complexcontent>

<extension 6¿s9="gm l:AbstractFeatu reType">

""'
i; ri3 ll nn : =

::'g,ç:i:r:,îË= r;,ïl3ríl
<element name="owns" type="ex: ParcelPropertyType" minOccurs="0"
maxOccurs="unbounded">

<annotation>
<appinfo><gml:reverseProperty>ex:owner</gm l:reverseProperty></appinfo>

</annotation>

o,"oXå|"J3"'
</extension>

</complexContent>
</complexType>

</element>
<complexType name="PersonPropertyïype">

<sequence minOccurs="0">
<element ref="ex: Person"/>

</sequence>
<attributeGroup ref="gm l:AssociationAttributeGrou p"/>
<attributeGroup ref="gml:OwnershipAttributeGroup" />

</complexType>

<complexType n ame="AddressType">
<sequence>

<element name="street" type="string" minOccu rs="0"/>
<element name="housenumber" type="string" minOccurs="0'7>
<element ¡¿¡s="poBox" type="string" minOccu rs="0"/>
<element name="city" type="string"/>
<element n¿¡9="postalCode" type="string"/>
<element name="country" type="ex:CountryCodeType" minOccurs="O" default="DE"/>

</sequence>
</complexType>

<simpleType name="BuildingTypeType">
<restriction base="string">

<enumeration value="church"/>
<enumeration value="school"/>
<enumeration y¿¡L¡e=,,garage,,/>
<enumeration value="residential houses"/>
<enumeration value="unknown"/>
<enumeration value="mixed'7>

</restriction>
</simpleType>

<simpteType name="CountryCodeType">
<union memberTypes="ex:CountryCodeEnumerationType ex:CountryCodeOtherType"/>

</simpleType>
<simpleType name="CountryCodeEnumerationType">

<restriction base="string">
<enumeration value="DE"/>
<enumeration value="US"/>
<enumeration value="C4"/>
<enumeration value="..."/>

</restriction>
</simpleïype>
<simpleType name="CountryCodeOtherType">

<restriction base="string">
<pattern value="other: \w{2,}"/>

</restriction>

oGc 07-036

Copyright O 2007 Open Geospatial Consortium, lnc. All Rights Reserved 355

occ 07-036

</simpleType>
<!-
<element name="Ellipse,' type=',ex:EllipseType', substitutionGroup=,'gml:AbstractCurveSegment'7>
<complexType name="EllipseType">

<complexcontent>
<extension 5¿ss="gml:AbstractOu rveSegmentType">

<sequence>
<element name=,,center,' type="gml: DirectpositionType'7>
<element name=,,semiminor,, type=,,gml:VectorType',/>
<element name=,'Sem imajor" type=,'g ml :VectorType,T>

</sequence>
</extension>

</complexContent>
</complexType>

</schema>

356 Copyright @ 2007 Open Geospatial Consortium, lnc. All Rights Reserved

oGG 07-036

Annex F
(normative)

GML-to-UML application schema encoding rules

F.1 General concepts

The mapping from a GML application schema to an ISO 19109 conformant application schema in UML is based
on a set of encoding rules. These encoding rules are conformant with the rules for GML application schemas as
described in Clauses 7 lo 21, especially Clauses 7,I and 21.

The rules listed in F.2 aim at an automatic mapping from a GML application schema to an ISO 19109 and
ISO/TS 19103 conformant UML application schema.

These rules do not prescribe that all GML application schemas shall be generated to fulfil the encoding
requirements documented in this annex. All schemas following the rules defined in Clause 21 are valid and
conformant GML application schemas.

This annex shall be used if there is a requirement in the application domain to derive an ISO 19109 conformant
Application Schema in UML from a GML application schema.

The XML namespace abbreviation "xsd" is used to refer to the namespace of XML Schema, which is
"http ://www.w3.orgl 2001 IXM LSch em a".

The XML namespace abbreviation "gml" refers to the XML namespace of GML, which is
"http://wrnrw.opengis.neVgml/3.2".

ln addition, GML imports definitions from the following namespaces

The XML namespace abbreviation "xlink" refers to the XML namespace for xlinks, which is
"http ://www.w3. org/1 999/xl i n k".

The term "GML namespaces" is used below to refer to the namespaces "gml" and "xlink".

F.2 Encoding rules

F.2.1 General encod¡ng requ¡rements

F.2.1.1 General remarks

The schema encoding rules are based on the general idea that the corresponding type and element declarations
in XML Schema are mapped to class definitions in the UML application schema, so that element structures in the
XML document can be mapped to the objects in the instance model.

Copyr¡ght @ 2007 Open Geospatial Consortium, lnc. All Rights Reserved. 357

occ 07-036

F.2.1.2 GML schema

F.2.1.2.1 General

To be a valid input into the mapping, the GML application schema shall meet the requirements of the relevant
conformance classes in2.2,at least "All GML application schemas", "GML application schema to be converted to
an ISO 19109 Application Schemas in UML" and "GML application schemas defining Features and Feature

Collections".

The GML application schema shall have and contain definitions for only one target namespace

The GML application schema may import definitions from XML namespaces other than its target namespace

A GML application schema consists of a set of one or more XML schema documents such that:

the documents have unique names;

the documents contain xsd:include elements for other schema documents with the same target namespace;

^-^ ¡^^ l^.,^l ^^L^-^ l^^..É^Á¡ ¡^. ¡L^ /^ntl ^^^l;^^+¡^h ô^h^m^ taraal nama¡na¡a ia na+ inal¡¡¡la¿l lrrr anr¡uilE tuP-t9vçt Þvttgtttq vvvurrrçrrt rvr lr19 vrvrL qvPlvqrrvrr ovr¡errrq rqrver ¡rqrrrvoPqve re pt sttt

other schema documents for the target namespace, but directly or indirectly includes all other schema
documents for the target namespace, if any;

the schema documents contain xsd:import elements for XML närnespaces utlrer than the tatget llalìtespace,
and for schema documents that contain definitions in those XML namespaces;

all included and imported schema documents are accessible via the URI specified by the schemalocation
attribute on the xsd:include and xsd:import elements that reference them;

a validating XML parser resolves all of the dependencies among the definitions contained in the set of
schema documents;

a validating XML parser validates the set of schema documents without error;

a validating XML parser validates an XML instance document containing elements and attributes that
represent all of the definitions from the target namespace of the GML application schema without error.

Documentation of the definitions contained in a GML application schema shall be stored in nested xsd:annotation
and xsd:documentation elements within the schema definition elements.

The version of a GML application schema, if applicable, shall be contained in the version attribute of the
xsd:schema element from the top-level schema for its target namespace.

All globaltype and element names within a GML application schema shall be unique.

The GML application schema shall not define any elements with anonymous types for objects.

The GML application schema shall not define any XML attributes or named groups.

Every complex type in a GML application schema shall either be a GML object type, a GML feature type, a GML
data type or a GML property type.

Complex types with simple content shall not be defined in the GML application schema.

358 Copyright @ 2007 Open Geospatial Consortium, lnc. All Rights Reserved.

occ 07-036

The name of all types defined in a GML application schema shall end with the suffix "Type"

A suffix "RestrictionType" in the name of a complex type shall only be used for an abstract type that derives by
restriction and which is a the base type of exactly one complex type that derives from this type by extension and
has the same name as the restricted type except that "RestrictionType" is replaced by "Type".

A suffix "PropertyType" in the name of a complex type shall only be used for an instantiable type that follows the
pattern for by-reference-or-value property types of GML. A complex type (GML object type or GML feature type)
with the same name shall exist that has "PropertyType" replaced by "Type".

A suffix "PropertyByValueType" in the name of a complex type shall only be used for an instantiable type that
follows the pattern for by- value property types of GML. A complex type (GML data type, GML object type or GML
feature type) with the same name shall exist that has "PropertyByValueType" is replaced by "Type".

NOTE These rules severely restrict the possible forms of GML application schemas.

F.2.1.2.2 GML object types including GML feature types

Each GML object type defined in a GML application schema shall have a content model that directly or indirectly
derives from gml : AbstractGMlType and shall have a gml : id attribute.

Each GML object type of a particular kind defined in a GML application schema shall derive from the most
specialized GML object type from the "http://www.opengis.nellgmll3.2" namespace of a similar kind (with matching
semantics) that could possibly be used to define its content model. So GML object types defined in a GML
application schema to represent geographic features (GML feature types) shall derive from
gml:AbstractFeatureType instead of from gml :AbstractcMlType, GML object types defined in a GML
application schema to represent geometric points shall derive from gml : Pointrype instead of from
gml : AbstractGeometryf ype, etc.

GML object types defined in the GML application schema that derive from GML object types outside of the target
namespace shall derive directly only from one of the GML object types listed in the third column of Table D.2
where there first column in the same row provides a class name of a class defined by the ISO 19100 series of
lnternational Standards or gml:AbstractGMLType or gml:AbstractFeatureType.

The schema definitions of abstract GML object types shall contain the attribute "abstract" with the value "true"

The name of abstract GML object types shall begin with the prefix "Abstract"

The schema definitions of GML object types for which no subtypes may be defined shall contain the attribute
"final" with the value "all".

The properties of the GML object type shall be specified in an xsd:sequence element.

F.2.1.2.3 Global elements for gml object types

One global XML element shall be defined for every GML object type defined in a GML application schema

The name of this element shall be the name of the GML object type without the "Type"-suffix.

The element shall have a substitutionGroup attribute whose value is the name of a global XML element whose
type is the base type of the GML object type.

Copyright @ 2007 Open Geospatial Consortium, lnc. All Rights Reserved 359

occ 07-036

F.2.1.2.4 Default property types for gml object types

A default GML property type may be defined in a GML application schema for every GML object type defined in
that GML application schema.

The GML property type shall either use or inherit directly or indirectly from one of the property types specified in

7 .2.3 or it shall be defined in accordance with the patterns specified in this subclause.

The name of this property type shall be the name of the GML object type with the "Type"-suffix replaced by
"PropertyType".

lf no default property type is specified for a GML object type, an application schema shall use
gml : Ref erenceType as the default property type of the GML object type.

F.2.1.2.5 lnline property types for gml object types

A default GML property type for inline properties may be defined in a GML application schema for every GML
object type defined in that GML application schema.

The êf\ll nrnnorlrr lrrnc chall aither inharif dircntlrr nr indirenflv frnm nml . Tnl i ncÞrnnêrt\/T\/nê- nr it shall he
'J'JT

defined in accordance with the patterns specified in 7.2.3.8. The use of the
gml :AsscociationAttributeGroup is prohibited in such properties.

The rrarrre uf tlris property type shall be the rrame of the GML object type with the "Type"-suffix replaced by
" PropertyByVal ueType".

lf no default property type for inline properties is specified for a GML object type, an application schema shall use
gmt:AssociationRof eType as the default property type for inline properties of the GML object type.

F.2.1.2.6 GML data types including GML union types

A complex type defined in a GML application schema that does not directly or indirectly derive from
gml : AbstractcMlType is called a GML data type.

The properties of the GML data type shall take one of the following forms:

The properties of the complex type as well as the properties of all of its base types are specified in an
xsd:sequence element with minOccurs and maxOccurs values of "1".

The GML data type is not derived from any base type. ln this case, the properties may be specified in either a
single xsd:sequence element with minOccurs and maxOccurs values of "1" or a single xsd:choice element
with minOccurs and maxOccurs values of "1".

The content model of the complex type shall not include a gm1 : id attribute.

F.2.1.2.7 Default property types for GML data types

A default GML property type for inline properties may be defined in a GML application schema for every GML data
type defined in that GML application schema.

The GML property type shall either inherit directly or indirectly from gml:rnlinePropertyType, or it shall be

defined in accordance with the patterns specified in 7.2.3.8. The use of the
gml :AsscociationAttributeGroup is prohibited in such properties.

360 Copyright @ 2007 Open Geospatial Consortium, lnc. All Rights Reserved.

occ 07-036

The name of this property type shall be the name of the GML data type with the "Type"-suffix replaced by
" PropertyByValueType".

lf no default property type for inline properties is specified for a GML data type, an application schema shall use
gml : AssociatlonRof eType as the default property type for inline properties of the GML data type.

F.2.1.2.8 Enumerations

A simple type defined in a GML application schema that is a restriction of xsd :string using only the
xsd:enumeration facet is called an enumeration.

F.2.1.2.9 Gode lists

A simple type defined in a GML application schema that is a union of an enumeration and a simple type that is a
restriction of xsd:string using only one xsd:pattern facet with the value "other: \w{2,f is called a code list.

Enumeration values may be qualified with an applnfo annotation (element gml : coder,istValue) specifying that
the enumeration value is the code value of another enumeration value; the associated enumeration value is given
as the text value of the gml : codelistval-ue element.

F.2.1.2.10 Global elements for GML data types, enumerations and code lists

No global XML element shall be defined for enumerations or code lists defined in a GML application schema

F.2.1.2.11 Predefined basic types

The simple types from the XML Schema and GML namespace listed in the fourth column of Table D.2 may be
used in the GML application schema. No other simple types from these namespaces shall be used in a GML
application schema.

F.2.1.2.12 GML properties

Every property of a GML object or feature type (except properties defined in the GML namespace) or of a GML
data or union type shall be represented by a single, locally defined xsd:element. Locally defined means that the
name and type of the element shall be given explicitly in the element declaration (no references to global XML
elements). The element may carry minOccurs and maxOccurs values. The name of this element shall be the
name of the property; the type shall be either a simple type or a property type.

F.2.1.2.13 Schematron constraints

All Schematron constraints are ignored

F.2.1.2.14 lmported elements and types from other XML namespaces

lf other XML Schema components are imported from other namespaces than XML Schema and GML, define the
relevant entries as extensions to Table D.2.

F.2.1.2.15 Other information

All other information in the GML application schema is not used in the encoding rules and is ignored,

Copyright @ 2007 Open Geospatial Consortium, lnc. All Rights Reserved. 361

occ 07-036

F.2.1.3 Gharacter repertoire and languages

The character encoding used for the schemas determines the available character repertoire

F.2.1.4 Exchangemetadata

Exchange metadata may be specified for every Feature or Feature Collection in a GML instance documentll). No

specific schema for the exchange metadata is added to the GML application schema.

F.2.1.5 Dataset and obiect identification

Unique gmt:id identifiers in accordance wilh 7.2.4.5 and XML's lD mechanism shall be used to identify GML
objects.

F.2.1.6 Updatemechanism

No explicit update mechanism shall be defined for the feature types defined in a GML application schema. lt is
assumed that other mechanisms are used to update an instance model data store.

F.2.1.7 lnput data structure

The schema for the input data structure is defined by the XML Scherna 1.0 Part 1: Structures, Paft 2: Datatypes
W3C Recommendations, and the Rules for GML application schemas (see Clause 21)

F.2.2 Output data structure

See ISO 191 18:2005, 4.3, for a description of the output data structure

F.2.3 Gonversion rules

F.2.3.1 Generalconcepts

The schema conversion rules defined in the following subclauses describe the mapping from a GML application
schema that follows the guidelines described inF.2.1 to a UML application schema that conforms to the rules
defined in ISO 19109 and ISO/TS 19103, using the encoding rules of ISO 19118:2005, Annex A, and in particular
the generic instance model described in 4.3. These rules are also based on the current rules for the GML model
and syntax as described in Clauses 7 to 21 (especially Clause 7).

The schema conversion rules map definitions from a (set of) valid GML application schema documents (XSDs) to
a set of UML packages. A top-level package with the stereotype <<Application Schema>> is created to contain all
the other packages in this set. By default, one package is created in this set for each XSD in the GML application
schema, including those directly or indirectly imported from XML namespaces other than the target namespace for
the GML application schema, except for XSDs for the GML namespaces. The top-level package owns directly or
indirectly all UML model elements mapped from object types in the GML application schema.

The declarations of the GML application schema may be arranged in a different package structure as long as the
top-level package keeps its name and stereotype and all the model elements still belong directly or indirectly to
this package.

11) By using the property elements whose content model has been derived from gm1 :AbstractMetadataPropertyType
and, for example, the ISO/TS 19139 XML Schema encoding of ISO 19'l 15:2003.

362 Copyright @ 2007 Open Geospatial Consortium, lnc. All Rights Reserved

)

occ 07-036

The type and element declarations in the GML application schema are mapped to class definitions in the UML
application schema, so that element structures in the GML XML document can be mapped to corresponding
objects in the instance model.

The UML modelshallcontain within a package with the name "lSO 19100" the applicable normative packages of
the ISO 19100 series of lnternational Standards or a strict profile of this model.

The UML model shall contain the UML package of all other GML application schemas imported by the GML
application schema.

Table F.1 gives an overview; full details of the mapping are specified in the subsequent subclauses.

Table F.l - Schema encoding overview

Table: GML t UML Application Schema Overview

GML application schema UML application schema

GML application schema Package <<ApplicationSchema>>

GML schema document {name} XSD Package named {name}

Object and property type and global element for any object
type that is a direct or indirect extension of
gml : AbstractFeatureType

Class with stereotype <<FeatureType>>

Object and property type and global element for any object
type that is a direct or indirect extension of
gml:AbstractGMLType, other than those that extend
gml : Abs t ra ct Fea tureType

Class with no stereotype

Data and property type and global element for any object
type that is not a direct or indirect extension of
gm1:AbstractcMLType and whose content model is a
sequence of properties

Class with stereotype <<DataType>>

Restriction of xsd: string with enumeration values Class with stereotype <<Enumeration>>

Union of an enumeration and a pattern Class with stereotype <<CodeList>>

Data and property type and global element for any object
type that is not a direct or indirect extension of
gml- : AbstractcMLType and whose content model is a
choice of properties

Class with stereotype <<Union>>

Local xsd:element of a simpleType or a complexType with
simpleContent or a type that does not directly or indirectly
inherit from gml : AbstractcMLType

UML Attribute

Local xsd:element of a type that contains
gml : As sociationAttributeGroup UML Association Role

Schematron constraints Not encoded

The multiplicity of attributes and association roles is derived from the minOccurs and maxOccurs attributes in local
xsd:element declarations.

F.2.3.2 GML schema documents

A top-level package with the stereotype <<Application Schema>> is created to contain all the other packages
generated for the GML application schema.

Copyright @ 2007 Open Geospatial Consortium, lnc. All Rights Reserved 363

oGc 07-036

The "targetNamespace" and "xmlns" tagged values are applied to the <<ApplicationSchema>> package with
corresponding values for the target namespace of the GML application schema

EXAMPLE "http://www.myorg.comimyns"and"myns"

The "version" tagged value is applied to the <<ApplicationSchema>> package with the default value of "1.0".

lf the "version" attribute of the xsd:schema element of the top-level schema document for the GML application
schema exists and contains a non-empty value, its value replaces the default tagged value.

The "xsdDocument" tagged value is set to the relative filename of the XML Schema document.

By default, one UML package is generated for each input schema document in the GML application schema,
including those directly or indirectly imported from XML namespaces other than the target namespace of the GML
application schema - except for XML Schema documents from the GML namespaces. Alternatively, a single
XML Schema document may also be split into several UML packages.

The packages are generated in the <<ApplicationSchema>> package for the GML application schema with names
that correspond to the names of the input schema documents.

The xsd:include and xsd:import statements in each input schema document are used to determine and set the
dependencies of the packages generated in the <<Application Schema>> package.

F.2.3.3 GML object types

Every GML object type shall be mapped to a UML class.

lf the object type directly or indirectly derives from qml:AbstractFeatureType, the stereotype of the class
shall be <<FeatureType>>, otherwise no stereotype shall be set.

The name of the class shall be the same as the name of the global element of the GML object type.

The class shall be abstract, if and only if the GML object type is abstract.

lf the GML object type is derived from another GML object type, then the class inherits from the corresponding
superclass. lf the base type is defined in the GML application schema or another imported GML application
schema, then the superclass is the class corresponding to this GML object type. lf the base type is defined in the
GML namespace, then the superclass is determined by Table D.2. lf the base type is listed in the third column of
that table, then the superclass is the class in the first column of the same row.

The GML properties of the GML object type shall be mapped to attributes and association roles as described in
F.2.3.9. Assign a tagged value "sequenceNumber" to all UML attributes and association roles created in this
mapping with unique integer values in ascending order reflecting the order of the properties in the sequence of the
object type.

F.2.3.4 GML object types (imported from the GML schema)

The complex types from the GML namespace listed in the left hand column of Table D.2 shall be mapped to the
predefined UML classes implemented by the ISO geographic information standards profile of GML in the second
column of the table.

364 Copyright @ 2007 Open Geospatial Consortium, lnc. All Rights Reserved.

occ 07-036

F.2.3.5 Basic types

The simple types from the XML Schema and GML namespace shown in the right hand column of Table D.2 shall
be mapped to the predefined UML classes implemented by the ISO geographic information standards profile of
GML in the left hand column of the table.

F.2.3.6 GML data types

Every GML data type shall be mapped to a UML class. The name of the class shall be the same as the name of
the complex type without the "Type"-suffix.

lf the GML data type is derived from another GML data type (base type), then the class inherits from the
corresponding su perclass.

lf the properties of the GML data type are embedded in an xsd:sequence element, the stereotype of the class
shallbe <<DataType>>, if they are embedded in an xsd:choice element, the stereotype of the class shallbe set to
<<Union>>.

The GML properties of the GML object type shall be mapped to attributes and association roles as described in
F.2.3.9. Assign a tagged value "sequenceNumber" to all UML attributes and association roles created in this
mapping with unique integer values in ascending order reflecting the order of the properties in the sequence of the
object type.

F.2.3.7 Enumerations

A simple type defined in the GML application schema as a restriction of xsd:string with enumeration values shall
be mapped to a class with the <<Enumeration>> stereotype in the UML application schema.

The name of the class shall be the name of the simple type

Every xsd:enumeration facet without an xsd:applnfo annotation with a child element gml : codellstvaf ue shall
be mapped to a UML attribute with the value as the attribute name.

Every xsd:enumeration facet with an xsd:applnfo annotation with a child element gm1 : codelistvalue shall be
mapped to an initial value of the UML attribute with the same name as the value of the gml :codelistvalue
element. lf no such UML attribute exists in the class, the facet shall be ignored.

F.2.3.8 Gode lists

A simple type defined an the GML application schema as a union of an xsd:pattern restriction with the value
"other:\w{2,i" and an enumeration shall be mapped to a class with the stereotype <<Codelist>> in the UML
application schema.

The name of the class shall be the name of the simple type.

Every xsd:enumeration facet of the enumeration without an xsd:applnfo annotation with a child element
gmt : codetistvaf ue shall be mapped to a UML attribute with the value as the attribute name.

Every xsd:enumeration facet of the enumeration with an xsd:applnfo annotation with a child element
gml:codelisrval-ue shall be mapped to an initial value of the UML attribute with the same name as the value
of the gmt : codef istvalue element. lf no such UML attribute exists in the class, the facet shall be ignored.

Copyright @ 2007 Open Geospatial Consortium, lnc. All Rights Reserved 365

occ 07-036

F.2.3.9 GML properties

lf the type of a property element:

is a simple type or the property type of GML data type, the property shall be mapped to a UML attribute with
the corresponding type as the data type;

is a property type of a GML object type (inline and/or by-reference) whose content model is directly or
indirectly derived from gml:AbstractMemberType, the property shall be mapped to a UML association role of
a UML aggregation to the class representing the target GML object type; if the content modelof the property
element contains an attribute "owns" with a fixed value of "true" (through a Schematron constraint) then the
UML aggregation shallbe change to a UML composition;

is a property type of a GML object type (inline and/or by-reference), the property shall be mapped to a UML
association role of a UML association to the class representing the target GML object type; if the property
type supports only by-reference, the target GML object type shall be determined from the embedded
xsd:applnfo annotation with a child element gml : targetEl-ement specifying the qualified element name of
the target type. The tagged value "inlineOrByReference" shall be set to "inline" for representations that allow
only an inline encoding of the property value and to "byReference" for representations that allow only a by-
reference encoding of the propertv value;

is a property type of a GML object type (inline and/or by-reference) whose content model is directly or
lndlrectly derived from gml:AbstractMetadataPropertyType, the UML attribute r¡r associatiorl role shall carly a
tagged value "isMetadata" with the value "trLre".

The name of the UML attribute or association role shall be the name of the GML property element.

The multiplicity of the UML attribute or association role shall be derived from the minOccurs and maxOccurs value
of the GML property,

lf the property element has an xsd:applnfo annotation with a child element gm1 : reversePropertyName
embedded, then the association role shall be defined as part of the association between the two classes where
the other association role has a name equal to the value of the qml : reversePropertyName element.

F.2.3.10 Documentation

XML Schema xsd:annotation/xsd:documentation elements in GML application schemas are mapped to
"documentation" tagged values in the UML application schema.

366 Copyright @ 2007 Open Geospatial Consortium, lnc. All Rights Reserved.

