OGC 07-036

Annex E
(normative)

UML-to-GML application schema encoding rules

E.1 General concepts

The mapping from an ISO 19109 conformant UML Application Schema to the corresponding GML application
schema is based on a set of encoding rules. These encoding rules are compliant with the rules for GML
application schemas and are based on ISO 19118.

The rules are derived from the rules for the GML model and syntax as described in Clauses 7 to 21, especially
Clause 7. The encoding rules of ISO 19118:2005, Annex A, are used whenever possible and feasible.

The rules listed in this annex aim at an automatic mapping from an ISO 19109 and ISO/TS 19103 conformant
UML application schema to a GML application schema (in accordance with the rules defined in Clause 21). As a
result of this automation, the resulting GML application schema will not make full use of the capabilities of XML
and XML Schema, but will provide an XML implementation conformant to the ISO 19100 series of International
Standards with a well-defined, predictable XML grammar.

These rules do not prescribe that all GML application schemas shall be generated by using these rules. All
schemas following the rules defined in Clause 21 are valid and conformant GML application schemas, whether
they are handcrafted, automatically derived from a UML application schema or produced by some other means.

The schema encoding rules are based on the general idea that the class definitions in the application schema are

mapped to type and element declarations in XML Schema, so that the objects in the instance model can be
mapped to corresponding element structures in the XML document.

E.2 Encoding rules
E.2.1 General encoding requirements
E.2.1.1 Application schemas

E.2.1.1.1 General (application schema, packages)

To be a valid input into the mapping the UML Application Schema shali conform to all of the following rules. See
1SO 19118:2005, A.2.1, for additional requirements.

The UML Application Schema shall conform to the rules defined in ISO 19109 and ISO/TS 19103.

The UML Application Schema shall be represented by a package with the stereotype <<Application Schema>>.
This package shall contain (i.e. own directly or indirectly) all UML model elements to be mapped to object types in
the GML application schema. The package may include other packages without the stereotype <<Application
Schema>> to group the different UML model elements within the application schema.

The UML model shall be complete and not contain external references unless exceptions are explicitly stated
below. Predefined classes may be imported from the standardized schemas of the ISO 19100 series of

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 335

OGC 07-036

International Standards. The classes from the ISO 19100 series of International Standards that are implemented
by the GML schema and used by the UML application schema shall be specified in a package with the name
"SO19100" or any sub-package of a package with that name.

Dependencies between packages shall be modelled explicitly. Permission elements with stereotype <<import>>
or unspecified dependency elements between packages shall be used to express the dependency of elements in
a package from elements in another package. All other dependency elements shall be ignored, see Figure E.1.

1

<<Application Schema>> e <<Leaf>>
Parcels > Buildings

[

|

|

|

|

.

<<Application Schema>>
Geodellc Polnts

Figure E.1 — Dependency between packages <informative>
The visibility of all UML elements shall be set to “public”. Only publicly visible elements shall be part of Application
Schemas used for data interchange between applications.
Documentation of the elements in the UML model shall be stored in tagged values “documentation”.
A unigue XML namespace shall be associated with the UML Application Schema. Tagged values
“targetNamespace” for the target namespace URI and “xmins" for the abbreviation shall be set if and only if the

package represents a UML application schema.

The version number of a package representing a UML Application Schema shall be specified in a tagged value
“yersion”, if applicable.

A GML profile may be associated with the application schema by a tagged value “gmlProfileSchema’. If provided,
the value shall be a URL referencing the schema location of the GML profile.

If a package shall be mapped to its own XML Schema document, a tagged value "xsdDocument" shall be set
providing a valid relative file name of the schema document. The tagged value shall be set for every package
representing the UML Application Schema. All tagged values "xsdDocument” in a UML model shall be unique.
EXAMPLE The value of an "xsdDocument" tagged value might be "GeodeticPoints.xsd" or "schemas/Parcels.xsd".

E.21.1.2 Classes

All class names within the same Application Schema shall be unique and an "NCName" as defined by W3C XML
Namespaces:1999.

Feature types shall be modelled as UML classes with stereotype <<FeatureType>>, see Figure E.2.
NOTE 1 Neither 1SO 19109 nor 1SO 19118:2005, Annex A, distinguishes between feature types and object types —

ISO 19109 only considers feature types while SO 191 18:2005, Annex A, classifies all feature types as object types. However,

336 Copyright © 2007 Open Geospatial Consortium, Inc. Al Rights Reserved.

OGC 07-036

the distinction is meaningful in GML and in practice often required in application schemas. The distinction made in this annex
is a conformant refinement of ISO 19118:2005, Annex A.

<<FeatureType>>
Building
+ extent : GM_Surface
+ address : Address
+ type : BuildingType

Figure E.2 — A feature type <informative>
Object types shall be modelled as UML classes with no stereotype. Object types are types where the instances
shall have an identity, but which are not feature types'0).

EXAMPLE Examples of such types are geometries, topologies, reference systems. Instances of these types may have,
for example, a name and an identifier.

UML classes with stereotype <<Type>> may have zero or more operations (these are not mapped to the GML
application schema), attributes or associations.

The stereotype <<Abstract>> shall not be used in an Application Schema, because its use may be inconsistent
with the use of correct UML notation, and thus misleading.

All instantiable subtypes of abstract types shall be either feature types, object types or data types.
Enumerations shall be modelled as UML classes with stereotype <<Enumeration>>.

Code lists shall be modelled as UML classes with stereotype <<CodeList>>, see Figure E.3.

<<CodeList>>
ParcelUsage

+ factory =1
+road =2

+ residential =3
+ offices =4

+ sea, river=5
+ ..

Figure E.3 — A code list <informative>

Union types shall be modelled as UML classes with stereotype <<Union>> (as specified in ISO 19107).

All other data types shall be modelled as UML classes with stereotype <<DataType>>, see Figure E 4.

10) Object types are not considered explicitly in ISO 19109:2005. They appear only as value types of property types.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 337

OGC 07-036

<<DataType>>
ParcelName

+ countryld : CharacterString

+ stateld : CharacterString

+ municipalityld : CharacterString
+ parcelldPrefix : CharacterString
+ parcelldSuffilx : CharacterString

Figure E.4 — A data type <informative>

UML classes of the 1SO 19100 series of International Standards that are part of the GML profile and for which a
GML base type has been provided in Table D.2 in the "GML type" column may be subclassed in the UML
application schema. In the subclasses, additional properties may be added or properties of the subtype may be
redefined with a restricted multiplicity or domain of values.

NOTE 2 Although redefinition of properties is supported, these redefined properties will be ignored in the conversion rules
and it is the responsibility of the application to verify the constraints introduced by the redefinition. All classes with other
stereotypes than those mentioned above may be part of the UML Application Schema, but will be ignored.

NOTE3 When an Application Schema refers to types defined by other standards of the 1SO 19100 series which are
implemented by the GML schema, then the class names should match one of those listed in the first column of Table D.2.

A generalization relatlonship may be specified only between two classes that are either:
— both feature types,

— both object types, or

— both data types.

All generalization relationships between classes shall have no stereotype. All generalization relationships with
other stereotypes will be ignored. The discriminator property of the UML generalization shall be blank.

If a class is a specialization of another class, then this class shall have only one supertype (no support for multiple
inheritance).

All classes shall have a stereotype specifying the meaning of the class. Classes without a stereotype are treated
as object types, see Figure E.5.

<<FeatureType>>
LandClasslfication

+ featureMetadata : MD_Metadata
+ extent : GM_Surface

1

<<FeatureType>> <<FeatureType>>
Forest Lake
+ type : ForestTypeEnumeration + depth [0..1] : Length

338 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

OGC 07-036

Figure E.5 — Generalization relationship between feature types <informative>

E.2.1.1.3 Attributes

Every UML attribute of an abstract type, feature type, object type, data type or union type shall have a name and
a type. The name shall be an "NCName" as defined by W3C XML Namespaces:1999. If its multiplicity is not “1",
the multiplicity shall be specified explicitly. An initial value may be specified for attributes with a number, string or
enumeration type.

The type shall either be a predefined type (see E.2.1.1.5) or a class defined in the UML model.

Every UML attribute of an enumeration class shall have a name. The type information is left empty. No multiplicity,
ordering or initial value information shall be attached to the attribute.

Every UML attribute of a code list class shall have a name. The type information is left empty. No multiplicity or
ordering information shall be attached to the attribute. An initial value may be specified to document a code for the
code list vailue. If it is omitted, the value (i.e. the attribute name) is used as the code.

The properties of a UML class are not ordered. To support the consistent ordering of the properties from the UML

model in the conversion to XML Schema, a tagged value “sequenceNumber” (value domain: integer) shall be
specified for every attribute. The value shall be unique for all attributes and association ends of a class.

E.2.1.1.4 Associations and association ends

Every UML association shall be an association with exactly two association ends. Both association ends shall

connect to a feature, object or data type and shall have no stereotype or the stereotype <<association>>

(otherwise the whole association will be ignored).

An association shall not contain any properties.

The rules for association ends are:

— If an association end is navigable it shall be marked as such and shall have a rolename. An association end
with no name shall be ignored, even if it marked as navigable. If a name is provided, it shall be an "NCName"
as defined by W3C XML Namespaces:1999.

— The multiplicity shall be given explicitly,

— The aggregation kind shall be specified explicitly if it is not “none”.

— If the target class of an association end is a data type, then the aggregation kind shall be “composition”.

Figure E.6 shows two example associations; one association is navigable in both directions and the other is an
aggregation which is navigable in one direction only.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 339

OGC 07-036

<<FeatureType>>
<<FeatureType>> Building
gee +hasBuilding + extent : GM_Surface
+area: Area 0.* + address : Address
+ extent : GM_Surface + type : BuildingType

+owns | 0.."

+owner | 1..*

<<FeatureType>>
Person

+ firstName : CharacterString
+ lastName : CharacterString

Figure E.6 — Associations <informative>

The properties of a UML class are not ordered. To support the consistent ordering of the properties from the UML
model in the conversion to XML Schema, a lagged value "sequenceNumber” (value domain: integer) shall be
specified for every association end. The value shall be unique for all attributes and association ends of a class.

E.2.1.1.5 Predefined types

The predefined types from ISO/TS 19103 listed in E.2.4.4 are treated as "basic types’ in the sense of
ISO 19118:2005, Annex A (i.e. a canonical XML Encoding is attached to them).

E.2.1.1.6 OCL constraints

All OCL constraints are ignored. The assessment of the validity of the instance model with respect to these
constraints is the task of the application processing the GML instances.

NOTE The Schematron language may be used to express OCL constraints as part of the XML Schema representing the
GML application schema.

E.2.1.1.7 Other information
All other information in the UML Application Schema is not used in the encoding rules and is ignored.

E.2.1.2 Character repertoire and languages

“UTF-8" or “UTF-16" shall be used as the character encoding of the XML Schema files (with the associated
character repertoire) in accordance with XML.

E.2.1.3 Exchange metadata

Exchange metadata may be specified for every feature or feature collection in a GML instance document by
specifying in the application schema property elements whose content model is derived from
"gml:AbstractMetadataPropertyType" as described in E.2.4.11 and E.2.4.13.

No specific schema for the exchange metadata is added to the GML application schema.

340 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

OGC 07-036

E.2.1.4 Dataset and object identification
Unique identifiers in accordance with XML's ID mechanism are used to identify objects.

NOTE The XML ID mechanism only requires that these identifiers are unique identifiers within the XML document in
which they appear.

E.2.1.5 Update mechanism

No explicit update mechanism is defined for the features defined in the GML application schema. It is assumed
that other mechanisms are used to update a data store.

NOTE An example is the “Transaction" operation of the OpenGIS® Web Feature Service Implementation Specification.

E.2.2 Input data structure

See 1ISO 19118:2005, A.3, for a description of the input data structure.

E.2.3 Output data structure

This encoding rule is based on the XML Recommendation 1.0 and the XML Linking Language (XLink) Version 1.0.
The schema for the output data structure that governs the structure of the exchange format shall be a (set of) valid
XML Schemags) in accordance with XML Schema 1.0 and the Rules for Application Schemas (see Clause 21).

The XML Schema conversion rules are defined in the following Subclause.
E.2.4 Conversion rules

E.2.4.1 General concepts

The schema conversion rules define how XML Schema documents (XSDs) shall be derived from an application
schema expressed in UML in accordance with ISO 19109. A number of general rules are defined in E.2.4 to
describe the mapping from a UML model that follows the guidelines described in E.2.1.

NOTE In this annex the namespace "xsd:" is used to refer to the namespace of XML Schema, which is
"http://www.w3.0rg/2001/XMLSchema”. The namespace “‘gml:”" refers to the namespace of GML, which s
“http://www.opengis.net/gmi/3.2".

The rules are based on the GML model and syntax as described in Clauses 7 to 21 (especially Clauses 7, 9
and 21) and also on the encoding rules of ISO 19118:2005, Annex A.

The schema encoding rules are based on the general idea that the class definitions in the UML application
schema are mapped to type and element declarations in XML Schema, so that the objects in the instance model
can be mapped to corresponding element structures in the XML document.

Table E.1 gives an overview.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 341

OGC 07-036

Table E.1 — Schema encoding overview

Table: UML - GML application schema overview

UML application schema GML application schema
Package One XML Schema document per package {default mapping)
<<Application Schema>> XML Schema document

Global element, whose content model is a globally scoped XML Schema

<<DataType>> complexType, property type

<<Enumeration>> Restriction of xsd:string with enumeration values

Union of an enumeration and a pattern (default mapping, an alternative mapping is

=ufgdstis= a reference to a dictionary)

Choice group whose members are GML objects or features, or objects

AU corresponding to DataTypes

Global element, whose content model is a globally scoped XML Schema type

=<FeauIElpe== derived by direct/indirect extension of gml:AbstractFeatureType, property type

Global element, whose content model is a globally scoped XML Schema type

No stereotype or <<Type>> . . | - g
i ¥t derived by directindirect extension of am!l:AbstractGMLType, property type
Y S yi L } Y tyf

Operations Not encoded

local xsd:element, the type is either a property type (if the lype is a complex type)

Attribute -
or a simple type.

local xsd:element, the type is always a property type (only named and navigable

Association role
roles)

General OCL constraints Not encoded

NOTE <<FeatureType>> is a new stereotype which does not appear in ISO/TS 19103 or 1SO 19109, and is used to
indicate that the type is a realization of GF_FeatureType and a specialization from AbstractFeature.

The multiplicity of attributes and association roles is mapped to “minOccurs” and “maxOccurs” attributes in
<xsd:element> declarations. The detailed mapping rules are described below.

For different UML model elements, different tagged values are used to control the mapping from UML to XML
Schema. The following Table E.2 provides a list of these tagged values.

342 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved,

OGC 07-036

Table E.2 — Tagged values

UML model element Associated tagged values

— documentation

— xsdDocument

— targetNamespace (only <<Application Schema>>)
Package
— xmins (only <<Application Schema>>)
— version (only <<Application Schema>>)

— gmlProfileSchema (only <<Application Schema>>)

— documentation

— noPropertyType

— byValuePropertyType
Class
— isCollection

— asDictionary (only <<CodeList>>)

— xmlSchemaType (only <<Type>>)

— documentation

— sequenceNumber
Attribute and association end
— inlineOrByReference

— isMetadata

E.2.4.2 UML packages

One XML Schema document is generated per package with the tagged value "xsdDocument" with the file name
specified by the tagged value.

If the tagged value "xsdDocument” is set for a package, then the schema document contains all the XML Schema
components resulting from the UML classes directly owned by the package. If the package is not a UML
application schema, the schema document shall be included by the schema document that contains the schema
components of the package that owns that package.

If the tagged value "xsdDocument" is not set for a package, all schema components are declared in the schema
document that contains the schema components of the package that owns that package.

NOTE The tagged value is mandatory for all packages with the stereotype <<Application Schema>>, but optional for all
other packages.

For every schema document, the "targetNamespace" and the "version" attributes of the root element shall be set
in accordance with the tagged values of the same name in the package representing the UML Application
Schema that owns the schema components within the schema document; if the "version” tagged value is not
specified, the value "unknown" shall be used. In addition an "xmIns" attribute shall be specified for the target
namespace with the value of the tagged value "xmins" as the abbreviation.

EXAMPLE 1 “http://www.myorg.com/myns” may be a target namespace and “myns" may be the associated abbreviation
used in the schema documents.

For every tagged value "gmlProfileSchema" of a package with the stereotype <<Application Schema>>, an

element <gml:gmIProfileSchema> with the content of the tagged value shall be created in an appinfo annotation
of the <schema> element as specified in 20.5.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 343

OGC 07-036

The dependencies between the packages shall be used to determine the required imports of other schemas and
additional includes of other schema documents:

— If the schema components specified by the target package of the dependency relationship are in the same
target namespace as those of the supplier package, then the schema document specifying the schema
components of the target package is "included".

— Otherwise the schema document representing the UML Application Schema package that contains the target
package is "imported”.

EXAMPLE 2 Mapping the information from Figure E.1 may resultin:

<7xml version="1.0" encoding="UTF-8"?>
<schema largetNamespace="http‘.!!www.mynrg.comlparce!s" xmIns="http://www.w3.org/2001/XMLSchema"
xmins:gmI="http:waw.opangis.netfgmlfs 2" xmlns:gp="htlp:i.-’www.rnyorg,com:‘geodeticPoims"
xmlns:pcl="hllp.ﬂwww.myorg‘comiparcels" xmins:iso19115="http:/lwww.isotc211.orgliso191 15/"
xmins:xlink="http:/hwww.w3.0rg/1999/xlink" elementFormDefault="qualified" version="2003-07-20">
<include schemal.ocation="Buildings.xsd"/>
<import namespace="htlp:f{www.myorg‘comlgeodeticPoints“ schemaLocation="GeodeticPoints.xsd"/>
<import namespace="hltp:!!www.opengis.neUngEB.Z“ schemalocation="base/gml.xsd"/>
<am =2

</schema>

E.2.4.3 UML classes (gencral rules)

Recognized stereotypes for UML classes are: no stereotype, <<FeatureType>>, <<Type>>, <<DataType>>,
<<Union>>, <<Codelist>> and <<Enumeration>>. All classes will be mapped to the corresponding class
category. All UML classes with other stereotypes will be ignored.

All UML classes shall have zero or one supertype.

All UML classes are mapped to named types. A suffix “Type” is added to the name of the type.

E.2.4.4 UML classes (basic types)

The basic types from the GML profile of I1SO/TS 19103 listed in the left column of Table D.2 (starting with
"CharacterString") are predefined and may be used as a data type of an attribute in an application schema
conforming to ISO 19109. The mapping to a built-in type of XML Schema ('xsd:") or GML (“gml:") is specified. If
multiple names are given in a cell of the table then the name in bold typeface shall be used as the default type of
the mapping.

NOTE Multiple values in the right column are used to support also the reverse mapping in Annex F.

EXAMPLE ISO/TS 19103 Integer maps to “xsd:integer’.

if a class with the stereotype <<Type>>has a canonical XML Schema encoding (e.g. from XML Schema) the XML
Schema typename corresponding to the data type shall be given as the value of the tagged value

“xmlSchemaType".

NOTE Canonical encodings may be preferred to structured encodings that follow the standard UML-to-GML encoding
rules in some cases, for example where a compact structure based on “simpleContent’ is already well known within the
application domain.

E.2.4.5 UML classes (data types)

UML classes with stereotype <<DataType>> shall be mapped to XML Schema complex types.

344 Copyright © 2007 Open Geospatial Consortium, inc. All Rights Reserved.

OGC 07-036

NOTE Data types with other stereotypes, i.e. <<Enumeration>>, <<CodeList>> and <<Union>>, and predefined basic
types are treated differently. See E.2.4.4, E.2.4.8, E.2.4.9, and E.2.4.10.

If the class has no supertype, it is a non-derived type in XML Schema; otherwise it extends its supertype which
shall not be derived from gml:AbstractGMLType (directly or indirectly). Abstract superclasses without any
attribute or navigable association role are ignored.

Global XML elements with appropriate settings for name (name of the UML class), type (hame of the UML class
plus “Type"), abstractness (if the class is abstract) and substitution groups (the qualified element name of the
superclass or gml : AbstractObject, if the class has no superclass) shall be defined for these classes.

A named complex type shall be created for these classes (carrying the name of the class with a “PropertyType”
suffix), if the class does not carry a tagged value "noPropertyType" with the value "true". The type follows the
pattern for association properties as defined in GML (see 7.2.3), but without allowing Xlink attributes.

EXAMPLE The data type "ParcelName” from Figure E.4 may be mapped to:

<complexType name="ParcelNameType">
<sequence>
<element name="countryld" type="string"/>
<element name="stateld" type="string"/>
<element name="municipalityld" type="string"/>
<element name="parcelldPrefix" type="string"/>
<element name="parcelldSuffix" type="string" minOccurs="0"/>
</sequence>
</complexType>

<element name="ParcelName" type="ex:ParcelNameType" substitutionGroup="gml:AbstractObject"/>
<complexType name="ParcelNameProperty Type">

<sequence>
<element ref="ex:ParcelName"/>
</sequence>
<attributeGroup ref="gml:OwnershipAttributeGroup" />
</complexType>

E.2.4.6 UML classes (feature types)

UML classes with stereotype <<FeatureType>> derive directly or indirectly from gml :AbstractFeatureType. If
the class is a class without supertype, it extends directly gm1 : AbstractFeatureType; otherwise it extends its
supertype which shall be derived from gml : AbstractFeatureType (again, directly or indirectly).

— Global XML elements with appropriate settings for name (name of the UML class), type (name of the UML
class plus “Type”), abstractness (true, if the class is abstract) and substitution group (the name of the
superclass or gml : BbstractFeature) are defined for these classes.

— Ifthe class has a single association which is an aggregation or composition of a target class, the association
role is converted to a property element, and the class carries a tagged value "isCollection" with the value
"true", the attribute group gml :AggregationAttributeGroup is added to the complex type of the feature

type.

— A named complex type shall be created for these classes (carrying the name of the class with a
“PropertyType” suffix), if the class does not carry a tagged value "noPropertyType" with the value "true". The
type follows the pattern for association properties as defined in GML (see 7.2.3).

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 345

OGC 07-036

— A named complex type shall be created for these classes (carrying the name of the class with a
“PropertyByValueType” suffix), if the class carries a tagged value "byValuePropertyType" with the value "true”.
The type is a profile of the pattern for association properties as defined in GML restricted to the “by value”
form (again, see 7.2.3).

EXAMPLE “Building” from Figure E.2 may be mapped to:

<complexType name="BuildingType">
<complexContent>
<extension base="gml:AbstractFeatureType">
<sequence>
<element name="extent" type="gml:SurfacePropertyType"/>
<element name="address" type="pcl:AddressPropertyType"/>
<element name="type" type="pcl:BuildingTypeType"/>
</sequence>
</extension>
</complexContent>
</complexType>

<complexType name="BuildingProperty Type">
<sequence minOccurs="0">
<element ref="pcl:Building"/>
</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>
<attributeGroup ref="gm!:OwnerehipAttributeGroup" />
</complexType>

<complexType name="BuildingPropertyByValueType">
<sequence>
<element ref="pcl:Building"/>
</sequence>
<attributeGroup ref="gmi:OwnershipAttributeGroup" />
</complexType>

<element name="Building" type="pcl:BuildingType" substitutionGroup="gml:AbstractFeature"/>
E.2.4.7 UML classes (object types)

UML classes with no stereotype or stereotype <<Type>> derive directly or indirectly from
gml:AbstractGMLType. If the class is a class without supertype it extends directly gml: AbstractGMLType,
otherwise it extends its supertype which shall be derived from gml:AbstractGMLType (again, directly or
indirectly), but not from gml:AbstractFeatureType (again, directly or indirectly).

— Global XML elements with appropriate settings for name (name of the UML class), type (name of the UML
class plus “Type"), abstractness (true, if the class is abstract) and substitution group (the name of the
supertype or “AbstractGML") are defined for these classes.

— Ifthe class has a single association which is an aggregation or composition of a target class, the association
role is converted to a property element, and the class carries a tagged value "isCollection” with the value
"true", the attribute group gml:AggregationAttributeGroup is added to the complex type of the object type.

— A named complex type shall be created for these classes (carrying the name of the class with a
“PropertyType” suffix), if the class does not carry a tagged value "noPropertyType" with the value "true”. The
type follows the pattern for association properties as defined in GML (see 7.2.3).

— A named complex type shall be created for these classes (carrying the name of the class with a
“PropertyByValueType" suffix), if the class carries a tagged value "byValuePropertyType" with the value "true”.

346 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

OGC 07-036

The type is a profile of the pattern for association properties as defined in GML restricted to the “by value”
form (again, see 7.2.3).

EXAMPLE
<element name="Ellipse" type="ex:EllipseType" substitutionGroup="gml:AbstractCurveSegment"/>

<complexType name="EllipseType">
<complexContent>
<extension base="gml:AbstractCurveSegmentType">
<sequence>
<element name="center" type="gml:DirectPositionType"/>
<element name="semiminor" type="gml:VectorType"/>
<element name="semimajor" type="gml:VectorType"/>
</sequence>
</extension>
</complexContent>
</complexType>

E.24.8 UML classes (enumerations)

UML classes with stereotype <<Enumeration>> are mapped to XML Schema simple types. The base type is
“string”, the domain of values is restricted to the set of literal values as specified by the attribute names of the
UML class.

EXAMPLE

<simpleType name="SignType">
<restriction base="string">
<enumeration value="-"/>
<enumeration value="+"/>
</restriction>
</simpleType>

E.2.4.9 UML classes (code lists)

A UML class with stereotype <<CodeList>> and without a tagged value "asDictionary" with the value "true" shall
be mapped like an enumeration, but with the following differences:

— A facet "<pattern value="other: \w{2,}/>" shall be added that allows for any text value beside the predefined
values; these free values are prefixed with “other: ".

— Ifa code is specified for a code list value, only the code shall be represented as an enumeration facet.

— An encoded code value shall be qualified with an appinfo annotation with a gml:description element
specifying the text value of the enumerated value.

EXAMPLE 1 The code list “ParcelUsage” from Figure E.3 may be represented as:

<simpleType name="ParcelUsageType">
<union memberTypes="pcl:ParcelUsageEnumerationType pcl: ParcelUsageOtherType"/>
<[/simpleType>

<simpleType name="ParcelUsageEnumerationType">

<restriction base="string">
<enumeration value="1">

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 347

OGC 07-036

<annotation>
<appinfo><gml:description>factory</gml:description></appinfo>
</annotation>
</enumeration>
<enumeration value="2">
<annotation>
<appinfo><gml:.description>road</gml:description></appinfo>
</annotation>
</enumeration>
<enumeration value="3">
<annotation>
<appinfo><gml:description>residential</gml.description></appinfo>
</annotation>
</enumeration>
<enumeration value="4">
<annotation>
<appinfo><gml:.description>offices</gmi.description></appinfo>
</annotation>
</enumeration>
<enumeration value="5">
<annotation>
<appinfo><gml:description>sea, river</gml:description></appinfo>
</annotaticn>
</enumeration>
</restriction>
</simpleType>

<simpleType name="ParcelUsageOtherType">
<restriction base="string">
<pattern value="other: \w{2,}"/>
</restriction>
</simpleType>

Alternatively, if the class carries a tagged value "asDictionary" with the value "true", @ gml : Dictionary shall be
used to represent a code list.

EXAMPLE 2 The code list "ParcelUsage” from Figure E.3 may be represented in a GML dictionary document as:

<gml:Dictionary gml:id="CodeL.ist" xmins:gml="http://www.opengis.net/gml/3.2"
xmins xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation="http://www.opengis.net/gml/3.2 gml.xsd">
<gml:identifier codeSpace="http://www.someorg.de/cl.xmI">My code lists</gml:identifier>
<gml.dictionaryEntry>
<gml:Dictionary gml:id="ParcelUsage">
<gml:identifier codeSpace="http://www.someorg.de/cl.xml">ParcelUsage</gml:identifier>
<gml.dictionaryEntry>
<gml:Definition gml:id="ParcelUsage_1">
<gml:description>factory</gml:description>
<gml:identifier codeSpace="http.//www.someorg.de/cl.xml#ParcelUsage">1 </gml:identifier>
</gml:Definition>
</gml:dictionaryEntry>
<gml:dictionaryEntry>
<gml:Definition gml:id="ParcelUsage_2">
<gml:description>road</gml:description>
<gml:identifier codeSpace="http://www.someorg.de/cl.xm [#ParcelUsage">2</gml:identifier>
</gml:Definition>
</gml:dictionaryEntry>
<gmi:dictionaryEntry>
<gml:Definition gm!:id="ParcelUsage_3">
<gml:description>residential</gm!.description>
<gml.identifier codeSpace="http://www.someorg.de/cl.xmi#ParcelUsage">3</gml.identifier>
</gml:Definition>

348 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

OGC 07-036

</gml.dictionaryEntry>
<gml.dictionaryEntry>
<gml:Definition gml:id="ParcelUsage_4">
<gml.description>offices</gml:description>
<gmlidentifier codeSpace="http://www.someorg.de/cl. xml#ParcelUsage">4</gml:identifier>
</gml:Definition>
</gml:dictionaryEntry>
<gml.dictionaryEntry>
<gml:Definition gml:id="ParcelUsage_5">
<gml:description>sea, river</gml:description>
<gml:identifier codeSpace="http://www.someorg.de/cl. xml#ParcelUsage">5</gml:identifier>
</gml:Definition>
</gml:dictionaryEntry>
</gml:Dictionary>
</gmldictionaryEntry>
</gml:Dictionary>

In an instance document the reference would then be encoded (using gml:CodeType as the content model, see E.2.4.11) for
example as:

<usage codeSpace="http://www.someorg.de/example/cl.xml#ParcelUsage">1</usage>

The codeSpace attribute points to the dictionary, the value is the name of the entry in that dictionary.

The way a code list is encoded in a GML application schema also determines how property elements that carry
the code lists as its value domain shall be encoded; see E.2.4.11.

E.2.4.10 UML classes (unions)

UML classes with stereotype <<Union>> are mapped as XML Schema complex types. These classes are mapped
like data types (see E.2.4.5), but instead of a <xsd:sequence> of the properties, a <xsd:choice> is used so that
exactly one of the properties is specified in an instance of a union.

EXAMPLE

<complexType name="RemoteResourceType">
<choice>
< element name="name" type="string"/>
< element name="uri" type="anyURI"/>
</choice>
</complexType>

E.2.4.11 UML attributes and association roles

A UML attribute or association role of an object or feature type is mapped to a local element with the same name
in the complex type defining the content model of the object or feature type. The minOccurs and maxOccurs
attributes are set in accordance with the definitions in the UML model (see 1SO 19118:2005, Annex A, for details
of the mapping). The type depends on the type of the value of the property in UML:

If the type of the value of the property is of simple content, then the type is used directly.

EXAMPLE 1 <element name="count" type="integer"/>

If the type of the value of the property is of complex content, then a property type shall be used. The default
encoding of the property type allows both the inline or by-reference representation for feature and object types

and the inline representation for data and union types. For feature and object types the representation may be
restricted to inline or by-reference using a tagged value “inlineOrByReference” with the values ‘“inline” or

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 349

OGC 07-036

“byReference” respectively. If the tagged value is missing or its value is “inlineOrByReference” the default
encoding shall be used.

If an attribute or association role is a metadata property, then the property type shall extend
gml :AbstractMetadataPropertyType (see 7.2.6); a metadata property is a property with the tagged value
“isMetadata" with the value "true" or whose value is a class defined by ISO 19115:2003. If an association role is
the target end of an aggregation or composition, then the property type shall extend gml : AbstractMemberType
(see 7.2.5.1) unless it is a metadata property. If an association role is the target end of a composition or an object-
valued attribute, then the property element shall add a Schematron constraint that asserts that the owns attribute
of the gml : OwnershipAttributeGroup is “true”. The Schematron constraint shall follow the following pattern:

<sch:pattern>
<sch:rule context="qualified name of the object element">
<sch:report test="qualified property name/@owns="true">This property is a composition, values must be
owned</sch:report>
</sch:rule>
</sch:pattern>

EXAMPLE 2 For a property ex:representativeLocation of a feature type ex:MyFeature that controls the point object
describing the location this could be described as follows:

<element name="representativeLocation" type="gml:PointProperty Type">
<annotation>
<appinfo>
<sch:pattern">
<sch:rule context="ex:MyFeature">
<sch:report test="ex:representativeLocation/@owns="true"'>This property is a composition, values
must be owned</sch:report>
</sch:rule>
</sch:pattern>
</appinfo>
</annotation>
</element>

If the property type is already specified in its application schema as a named type (this can be detected by
inspecting the tagged values "noPropertyType" and "byValuePropertyType"), this schema component shall be
referenced; otherwise, an anonymous property type shall be defined locally in the property element.

If the encoded property is an association end and the other association end of the association is also encoded in
the GML application schema, the property name of the other association end shall be encoded in a
gml : reversePropertyName element in an appinfo annotation of the property element (see 7.2.3.9).

EXAMPLE 3 By-reference orinline:

<element name="owner" type="ex:PersonPropertyType" minOccurs="0">
<annotation>
<appinfo>
<gml:reversePropertyName>ex:owns</gml:reversePropertyName>
</appinfo>
</annotation>
</element>

<complexType name="PersonProperty Type">
<sequence minOccurs="0">
<element ref="ex:Person"/>
</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>
<attributeGroup ref="gmi:OwnershipAttributeGroup" />
</complexType>

350 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

OGC 07-036

or

<element name="owner" minOccurs="0">
<annotation>
<appinfo>
<gml:reversePropertyName>ex:owns</gml:reversePropertyName>
</appinfo>
</annotation>
<complexType>
<sequence minOccurs="0">
<element ref="ex:Person"/>
</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>
</complexType>
</element>

Alternatively, the property type may support only one of the representations, inline or by-reference, depending on
the tagged value "inlineOrByReference".

EXAMPLE 4 inline only:
<element name="owner" type="ex:PersonPropertyByValueType" minOccurs="0"/>

<complexType name="PersonPropertyByValueType">
<sequence>
<element ref="ex:Person"/>
</sequence>
</complexType>

or

<element name="owner" minOccurs="0">
<complexType>
<sequence>
<element ref="ex:Person"/>
</sequence>
</complexType>
</element>

If only the by-reference representation is to be supported, then the property element shall be qualified with an
appinfo annotation element gml : targetElement specifying the qualified element name of the target type.

<element name="targetElement" type="string"/>

If the encoded property is an association end and the other association end of the association is also encoded in
the GML application schema, the property name of the other association end shall be encoded in another appinfo
annotation element gml : reversePropertyName specified above.

EXAMPLE 5 By-reference only:

<element name="owner" type="gml.ReferenceType" minOccurs="0">
<annotation>
<appinfo>
<gml:targetElement>ex:Person</gml:targetElement>
<gml:reversePropertyName>ex:owns</gml:reversePropertyName>
</appinfo>
</annotation>
</element>

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 351

OGC 07-036

Depending on the encoding of the class, a UML attribute of a code list or enumeration type is mapped to an
element with either a string value (value domain: values of the enumeration or code list) or a value referencing the
corresponding dictionary entry. In an instance, the dictionary may be explicitly referenced using the codeSpace
attribute. A default value for the URI representing the dictionary may be provided using an appinfo annotation
element gml:defaultCodeSpace.

<element name="defaultCodeSpace" type="anyURI"/>
EXAMPLE 6 The code list “BuildingType” may be represented as:
<element name="type" type="ex:BuildingTypeType"/>
or

<element name="type" type="gml:CodeType">
<annotation>
<appinfo>
<gml.defaultCodeSpace>http://iwww.someorg.de/example/cl.xmi#Building Type</gml:defaultCodeSpace>
</appinfo>
</annotation>
</element>

If a UML attribute or UML association role is redefined (i.e. a subclass contains an attribute or association role
with the same name as in a supertype) then this property is not part of the content model of the subtype. It is the
responsibility of an application to assert the compliance of instances with such constraints expressed in the
conceptual model.

All attributes and association roles of a class shall be converted in the ascending sort order of the tagged value
“sequenceNumber”.

E.2.4.12 Documentation

Tagged values "documentation” from elements in the UML model are mapped to annotation/documentation
elements in the XML Schema files.

EXAMPLE

<element name="curveProperty" type="gml:CurvePropertyType">
<annotation>
<documentation>This property element either references a curve via the XLink-attributes or contains the curve
element, curveProperty is the predefined property which can be used by GML application schemas whenever a GML feature
has a property with a value that is substitutable for AbstractCurve.</documentation>
</annotation>
</element>

E.2.4.13 Classes imported from the ISO 19100 series of International Standards

In addition to the rules defined above, the following rules apply when the UML Application Schema imports
classes from the 1SO 19100 series of International Standards.

Classes from the 1SO 19100 series of International Standards that are implemented by the GML schema shall be
recognized. The use of classes from the ISO 19100 series of International Standards shall be conformant with
ISO 19109. The mapping of the relevant classes from the ISO 19100 series of International Standards is shown in
Table D.2.

352 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

OGC 07-036

If a class from ISO 19115 and implemented in ISO/TS 19139 is used as the type of a property, then an
anonymous property type extending gmi:AbstraciMetadataPropertyType shall be defined. The encapsulated
object element is the corresponding object element for the metadata type as specified by ISO/TS 19139.

E.2.4.14 Classes imported from other conceptual models with a predefined XML encoding

In addition to the rules defined above, the following rules apply when the UML Application Schema imports
classes from another UML model for which a standard XML encoding has already been specified.

Extensions to Table D.2 for the imported classes shall be specified. The table shall be distributed together with the
application schema in UML.

The mapping of the relevant classes from the imported model to XML Schema is normatively specified by this
table.

E.3 Example <informative>

<<FeatureType>> <<Enumeration>>
<<Fea;ureTIype>> Building BuildingType
arcel
- o *hesBullding]+ extent : GM_Surface + church
+area: /.\rea 0.* + address : Address + school
+ extent : GM_Surface + type : BuildingType + garage
+ residentlal houses
+owns | 0..* + unknown
+ mixed
<<DataType>>
Address
+owner | 1.* + street [0..1] : CharacterString <<CodeList>>
<<FeatureTypa>> + housenumber [0..1] : CharacterString CountryCode
Person + poBox [0..1] : CharacterString +DE
+ city : CharacterString +US
+ firstName : CharacterString + postalCode : CharacterString +CA
+ lastName : CharacterString + country [0..1] : CountryCode = DE +...
<<Abstract>>
GM_CurveSegment
(from Geometlnic primitive)
Elipse

+ center : DirectPosition
+ semiminor : Vector
+ semimajor : Vector

Figure E.7 — Example application schema

The application schema shown in Figure E.7 may be encoded as

<?xml version="1.0" encoding="UTF-8"?>

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 353

OGC 07-036

<schema targetNamespace="http://www.someorg.de/example" xmins="http://www.w3.0rg/2001/XMLSchema"
xmins:ex="http://www.someorg.de/example" xmins:gml="http://www.opengis.net/gml/3.2" elementFormDefault="qualified”
version="1.0">
<|-- ==== == = >
<import namespace="http://www.opengis.net/gml|/3.2" schemaLocation="./gml.xsd"/>
<import namespace="http://www.w3.0rg/1999/xlink" schemaLocation="./xlinks.xsd"/>
<lem == ==== == ==_>
<element name="Parcel" substitutionGroup="gmil:AbstractFeature">
<complexType>
<complexContent>
<extension base="gml:AbstractFeature Type">
<sequence>
<element name="area" type="gml:AreaType"/>
<element name="extent" type="gml:SurfaceProperty Type"/>
<element name="owner" type="ex:PersonPropertyType" maxOccurs="unbounded">
<annotation>
<appinfo><gml:reverseProperty>ex:owns</gml:reverseProperty></appinfo>
</annotation>
</element>
<glement name="hasBuilding" type="ex:BuildingPropertyType" minOccurs="0"
maxOccurs="unbounded"/>
</sequence>
</extensicn>
</complexContent>
</complexType>
</element>
<complexType name="ParcelPropertyType">
<sequence minOccurs="0">
<element ref="ex:Parcel"/>
</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>
<attribute Group ref="gml:OwnershipAttributeGroup" />
</complexType>
<|-- = ES===== -
<element name="Building" substitutionGroup="gml:AbstractFeature">
<complexType>
<complexContent>
<extension base="gml:AbstractFeature Type">
<sequence>
<element name="extent" type="gml:SurfacePropertyType"/>
<element name="address">
<complexType>
<sequence>
<element name="Address" type="ex:Address Type"/>
</sequence>
</complexType>
</element>
<element name="type" type="ex:BuildingTypeType"/>
</sequence>
</extension>
</complexContent>
</complexType>
</element>
<complexType name="BuildingPropertyType">
<sequence minOccurs="0">
<element ref="ex:Building"/>
</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>
<attributeGroup ref="gml:OwnershipAttributeGroup" />
</complexType>
<lem == == __>

<element name="Person" substitutionGroup="gml:AbstractFeature">

354 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

OGC 07-036

<complexType>
<complexContent>
<extension base="gml:AbstractFeature Type">
<sequence>
<element name="firstName" type="string"/>
<element name="lastName" type="string"/>
<element name="owns" type="ex:ParcelProperty Type" minOccurs="0"
maxOccurs="unbounded">
<annotation>
<appinfo><gml:reverseProperty>ex:owner</gml:reverseProperty></appinfo>
</annotation>
</element>
</sequence>
</extension>
</complexContent>
</complexType>
</element>
<complexType name="PersonProperty Type">
<sequence minOccurs="0">
<element ref="ex:Person"/>
</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>
<attributeGroup ref="gml:OwnershipAttributeGroup" />
</complexType>
<|am === B === _..>
<complexType name="AddressType">
<sequence>
<element name="street" type="string" minOccurs="0"/>
<element name="housenumber" type="string" minOccurs="0"/>
<element name="poBox" type="string" minOccurs="0"/>
<element name="city" type="string"/>
<element name="postalCode" type="string"/>
<element name="country" type="ex:CountryCodeType" minOccurs="0" default="DE"/>
</sequence>
</complexType>
<]-- ======= E=== === _.>
<simpleType name="BuildingTypeType">
<restriction base="string">
<enumeration value="church"/>
<enumeration value="school"/>
<enumeration value="garage"/>
<enumeration value="residential houses"/>
<enumeration value="unknown"/>
<enumeration value="mixed"/>
</restriction>
</simpleType>
<l-- === = >
<simpleType name="CountryCodeType">
<union memberTypes="ex:CountryCodeEnumerationType ex:CountryCodeOtherType"/>
</simpleType>
<simpleType name="CountryCodeEnumerationType">
<restriction base="string">
<enumeration value="DE"/>
<enumeration value="US"/>
<enumeration value="CA"/>
<enumeration value="..."/>
</restriction>
</simpleType>
<simpleType name="CountryCodeOtherType">
<restriction base="string">
<pattern value="other: \w{2 }"/>
</restriction>

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 355

OGC 07-036

</simpleType>
<|-- ======s====== -—
<element name="Ellipse" type="ex:EllipseType" substitutionGroup="gml:AbstractCurveSegment"/>
<complexType name="EllipseType">
<complexContent>
<extension base="gml:AbstractCurveSegmentType">
<sequence>
<element name="center" type="gml:DirectPositionType"/>
<element name="semiminor" type="gml:VectorType"/>
<element name="semimajor" type="gmi:VectorType"/>
</sequence>
</extension>
</complexContent>
</complexType>
</schema>

356 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

OGC 07-036

Annex F
(normative)

GML-to-UML application schema encoding rules

F.1 General concepts

The mapping from a GML application schema to an ISO 19109 conformant application schema in UML is based
on a set of encoding rules. These encoding rules are confarmant with the rules for GML application schemas as
described in Clauses 7 to 21, especially Clauses 7, 9 and 21.

The rules listed in F.2 aim at an automatic mapping from a GML application schema to an ISO 19109 and
ISO/TS 19103 conformant UML application schema.

These rules do not prescribe that all GML application schemas shall be generated to fulfil the encoding
requirements documented in this annex. All schemas following the rules defined in Clause 21 are valid and
conformant GML application schemas.

This annex shall be used if there is a requirement in the application domain to derive an ISO 19109 conformant
Application Schema in UML from a GML application schema.

The XML namespace abbreviation "xsd" is used to refer to the namespace of XML Schema, which is
"hitp://www . w3.0rg/2001/XMLSchema".

The XML namespace abbreviation “gml" refers to the XML namespace of GML, which is
“http://www.opengis.net/gmi/3.2".

In addition, GML imports definitions from the following namespaces:

The XML namespace abbreviation “xlink” refers to the XML namespace for xlinks, which is
“http:/iwww.w3.0rg/1999/xlink”.

The term “GML namespaces” is used below to refer to the namespaces “gml” and “xlink”.

F.2 Encoding rules
F.2.1 General encoding requirements

F.2.1.1 General remarks
The schema encoding rules are based on the general idea that the corresponding type and element declarations

in XML Schema are mapped to class definitions in the UML application schema, so that element structures in the
XML document can be mapped to the objects in the instance model.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 357

OGC 07-036

F.2.1.2 GML schema

F.2.1.21 General

To be a valid input into the mapping, the GML application schema shall meet the requirements of the relevant

conformance classes in 2.2, at least "All GML application schemas”, "GML application schema to be converted to

an 1SO 19109 Application Schemas in UML" and "GML application schemas defining Features and Feature

Collections".

The GML application schema shall have and contain definitions for only one target namespace.

The GML application schema may import definitions from XML namespaces other than its target namespace.

A GML application schema consists of a set of one or more XML schema documents such that:

— the documents have unique names;

— the documents contain xsd:include elements for other schema documents with the same target namespace,

— one top-level schema document for the GML application schema target namespace is not included by any
other schema documents for the target namespace, but directly or indirectly includes all other schema

documents for the target namespace, if any;

— the schema documents contain xsd.import elements for XML namespaces other than lhe larget namespace,
and for schema documents that contain definitions in those XML namespaces;

— all included and imported schema documents are accessible via the URI specified by the schemalocation
attribute on the xsd:include and xsd:import elements that reference them,;

— a validating XML parser resolves all of the dependencies among the definitions contained in the set of
schema documents;

— avalidating XML parser validates the set of schema documents without error;

— a validating XML parser validates an XML instance document containing elements and attributes that
represent all of the definitions from the target namespace of the GML application schema without error.

Documentation of the definitions contained in a GML application schema shall be stored in nested xsd:annotation
and xsd:documentation elements within the schema definition elements.

The version of a GML application schema, if applicable, shall be contained in the version attribute of the
xsd:schema element from the top-level schema for its target namespace.

All global type and element names within a GML application schema shall be unique.
The GML application schema shall not define any elements with anonymous types for objects.
The GML application schema shall not define any XML attributes or named groups.

Every complex type in a GML application schema shall either be a GML object type, a GML feature type, a GML
data type or a GML property type.

Complex types with simple content shall not be defined in the GML application schema.

358 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

OGC 07-036

The name of all types defined in a GML application schema shall end with the suffix “Type”.

A suffix “RestrictionType” in the name of a complex type shall only be used for an abstract type that derives by
restriction and which is a the base type of exactly one complex type that derives from this type by extension and
has the same name as the restricted type except that “RestrictionType" is replaced by “Type".

A suffix “PropertyType” in the name of a complex type shall only be used for an instantiable type that follows the
pattern for by-reference-or-value property types of GML. A complex type (GML object type or GML feature type)
with the same name shall exist that has “PropertyType” replaced by “Type”.

A suffix “PropertyByValueType” in the name of a complex type shall only be used for an instantiable type that
follows the pattern for by- value property types of GML. A complex type (GML data type, GML object type or GML
feature type) with the same name shall exist that has “PropertyByValueType” is replaced by “Type”.

NOTE These rules severely restrict the possible forms of GML application schemas.

F.2.1.2.2 GML object types including GML feature types

Each GML object type defined in a GML application schema shall have a content model that directly or indirectly
derives from gml : AbstractGMLType and shall have a gml : id attribute.

Each GML object type of a particular kind defined in a GML application schema shall derive from the most
specialized GML object type from the “http://www.opengis.net/gml/3.2" namespace of a similar kind (with matching
semantics) that could possibly be used to define its content model. So GML object types defined in a GML
application schema to represent geographic features (GML feature types) shall derive from
gml:AbstractFeatureType instead of from gml:AbstractGMLType, GML object types defined in a GML
application schema to represent geometric points shall derive from gml:PointType instead of from
gml:AbstractGeometryType, etc.

GML object types defined in the GML application schema that derive from GML object types outside of the target
namespace shall derive directly only from one of the GML object types listed in the third column of Table D.2
where there first column in the same row provides a class name of a class defined by the ISO 19100 series of
International Standards or gml:AbstractGMLType or gml:AbstractFeatureType.

The schema definitions of abstract GML object types shall contain the attribute "abstract” with the value “true”.

The name of abstract GML object types shall begin with the prefix “Abstract”.

The schema definitions of GML object types for which no subtypes may be defined shall contain the attribute
“final” with the value “all’.

The properties of the GML object type shall be specified in an xsd:sequence element.

F.2.1.2.3 Global elements for gml object types
One global XML element shali be defined for every GML object type defined in a GML application schema.
The name of this element shall be the name of the GML object type without the “Type”-suffix.

The element shall have a substitutionGroup attribute whose value is the name of a global XML element whose
type is the base type of the GML object type.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 359

OGC 07-036

F.21.2.4 Default property types for gml object types

A default GML property type may be defined in a GML application schema for every GML object type defined in
that GML application schema.

The GML property type shall either use or inherit directly or indirectly from one of the property types specified in
7.2.3 or it shall be defined in accordance with the patterns specified in this subclause.

The name of this property type shall be the name of the GML object type with the “Type"-suffix replaced by
“PropertyType”.

if no default property type is specified for a GML object type, an application schema shall use
gml :ReferenceType as the default property type of the GML object type.

F.21.2.5 Inline property types for gml object types

A default GML property type for inline properties may be defined in a GML application schema for every GML
object type defined in that GML application schema.

The GML property type shall either inherit directly or indirectly from gml:Inlin

nePr ty
defined in accordance with the patterns specified in 7.2.3.8. The
gml :AsscociationAttributeGroup is prohibited in such properties.

The name of this properly type shall be the name of the GML object type with the “Type’-suffix replaced by
“PropertyByValueType".

If no default property type for inline properties is specified for a GML object type, an application schema shall use
gml :AssociationRoleType as the default property type for inline properties of the GML object type.

F.2.1.2.6 GML data types including GML union types

A complex type defined in a GML application schema that does not directly or indirectly derive from
gml : AbstractGMLType is called a GML data type.

The properties of the GML data type shall take one of the following forms:

— The properties of the complex type as well as the properties of all of its base types are specified in an
xsd:sequence element with minOccurs and maxOccurs values of “1”.

— The GML data type is not derived from any base type. In this case, the properties may be specified in either a
single xsd:sequence element with minOccurs and maxOccurs values of “1” or a single xsd:choice element
with minOccurs and maxOccurs values of “1".

The content model of the complex type shall notinclude a gml: id attribute.

F.2.1.2.7 Default property types for GML data types

A default GML property type for inline properties may be defined in a GML application schema for every GML data
type defined in that GML application schema.

The GML property type shall either inherit directly or indirectly from gml:InlinePropertyType, or it shall be

defined in accordance with the patterns specified in 7.2.3.8. The use of the
gml :AsscociationAttributeGroup is prohibited in such properties.

360 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

OGC 07-036

The name of this property type shall be the name of the GML data type with the “Type’-suffix replaced by
“PropertyByValueType".

If no default property type for inline properties is specified for a GML data type, an application schema shall use
gml:AssociationRoleType as the default property type for inline properties of the GML data type.

F.2.1.2.8 Enumerations

A simple type defined in a GML application schema that is a restriction of xsd :string using only the
xsd:enumeration facet is called an enumeration.

F.2.1.2.9 Code lists

A simple type defined in a GML application schema that is a union of an enumeration and a simple type that is a
restriction of xsd:string using only one xsd:pattern facet with the value “other: \w{2,}" is called a code list.

Enumeration values may be qualified with an appinfo annotation (element gml: codeListvalue) specifying that

the enumeration value is the code value of another enumeration value; the associated enumeration value is given
as the text value of the gml : codeListValue element.

F.2.1.2.10 Global elements for GML data types, enumerations and code lists

No global XML element shall be defined for enumerations or code lists defined in a GML application schema.

F.2.1.2.11 Predefined basic types
The simple types from the XML Schema and GML namespace listed in the fourth column of Table D.2 may be

used in the GML application schema. No other simple types from these namespaces shall be used in a GML
application schema.

F.2.1.2.12 GML properties

Every property of a GML object or feature type (except properties defined in the GML namespace) or of a GML
data or union type shall be represented by a single, locally defined xsd:element. Locally defined means that the
name and type of the element shall be given explicitly in the element declaration (no references to global XML

elements). The element may carry minOccurs and maxOccurs values. The name of this element shall be the
name of the property; the type shall be either a simple type or a property type.

F.2.1.213 Schematron constraints
All Schematron constraints are ignored.

F.2.1.2.14 Imported elements and types from other XML namespaces

If other XML Schema components are imported from other namespaces than XML Schema and GML, define the
relevant entries as extensions to Table D.2.

F.2.1.2.15 Other information

All other information in the GML application schema is not used in the encoding rules and is ignored.

Copyright © 2007 Open Geospatial Consortium, Inc. Ali Rights Reserved. 361

OGC 07-036

F.2.1.3 Character repertoire and languages

The character encoding used for the schemas determines the available character repertoire.

F.2.1.4 Exchange metadata

Exchange metadata may be specified for every Feature or Feature Collection in a GML instance document!?). No
specific schema for the exchange metadata is added to the GML application schema.

F.2.1.5 Dataset and object identification

Unique gml:id identifiers in accordance with 7.2.4.5 and XML's ID mechanism shall be used to identify GML
objects.

F.21.6 Update mechanism

No explicit update mechanism shall be defined for the feature types defined in a GML application schema. It is
assumed that other mechanisms are used to update an instance model data store.

F.2.1.7 Input data structure

The schema for the input data structure is defined by the XML Schema 1.0 Part 1. Struclures, Part 2: Datatypes
W3C Recommendations, and the Rules for GML application schemas (see Clause 21)

F.2.2 Output data structure

See ISO 19118:2005, A.3, for a description of the output data structure.
F.2.3 Conversion rules

F.2.3.1 General concepts

The schema conversion rules defined in the following subclauses describe the mapping from a GML application
schema that follows the guidelines described in F.2.1 to a UML application schema that conforms to the rules
defined in 1SO 19109 and ISO/TS 19103, using the encoding rules of ISO 19118:2005, Annex A, and in particular
the generic instance model described in A.3. These rules are also based on the current rules for the GML mode!
and syntax as described in Clauses 7 to 21 (especially Clause 7).

The schema conversion rules map definitions from a (set of) valid GML application schema documents (XSDs) to
a set of UML packages. A top-level package with the stereotype <<Application Schema>> is created to contain all
the other packages in this set. By default, one package is created in this set for each XSD in the GML application
schema, including those directly or indirectly imported from XML namespaces other than the target namespace for
the GML application schema, except for XSDs for the GML namespaces. The top-level package owns directly or
indirectly all UML model elements mapped from object types in the GML application schema.

The declarations of the GML application schema may be arranged in a different package structure as long as the
top-level package keeps its name and stereotype and all the model elements still belong directly or indirectly to
this package.

11) By using the property elements whose content model has been derived from gml:AbstractMetadataPropertyType
and, for example, the ISO/TS 19139 XML Schema encoding of ISO 19115:2003.

362 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved

OGC 07-036

The type and element declarations in the GML application schema are mapped to class definitions in the UML
application schema, so that element structures in the GML XML document can be mapped to corresponding
objects in the instance model.

The UML model shall contain within a package with the name "ISO 19100" the applicable normative packages of
the ISO 19100 series of International Standards or a strict profile of this model.

The UML model shall contain the UML package of all other GML application schemas imported by the GML
application schema.

Table F.1 gives an overview; full details of the mapping are specified in the subsequent subclauses.

Table F.1 — Schema encoding overview

Table: GML - UML Application Schema Overview

GML application schema UML application schema
GML application schema Package <<ApplicationSchema>>
GML schema document {name} XSD Package named {name}

Object and property type and global element for any object
type that is a direct or indirect extension of Class with stereotype <<FeatureType>>
gml:AbstractFeatureType

Object and property type and global element for any object
type that is a direct or indirect extension of
gml:AbstractGMLType, other than those that extend
gml:AbstractFeatureType

Class with no stereotype

Data and property type and global element for any object
type that is not a direct or indirect extension of
gml:AbstractGMLType and whose content model is a
sequence of properties

Class with stereotype <<DataType>>

Restriction of xsd: st ring with enumeration values Class with stereotype <<Enumeration>>

Union of an enumeration and a pattern Class with stereotype <<Codelist>>

Data and property type and global element for any object
type that is not a direct or indirect extension of
gml:AbstractGMLType and whose content model is a
choice of properties

Class with stereotype <<Union>>

Local xsd:element of a simpleType or a complexType with
simpleContent or a type that does not directly or indirectly | UML Attribute
inherit from gml:AbstractGMLType

Local xsd:element of a type that contains

gml:AssociationAttributeGroup UML Association Role

Schematron constraints Not encoded

The multiplicity of attributes and association roles is derived from the minOccurs and maxOccurs attributes in local
xsd:element declarations.

F.2.3.2 GML schema documents

A top-level package with the stereotype <<Application Schema>> is created to contain all the other packages
generated for the GML application schema.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 363

OGC 07-036

— The “targetNamespace” and “xmins” tagged values are applied to the <<ApplicationSchema>> package with
corresponding values for the target namespace of the GML application schema

EXAMPLE “hitp://www.myorg.com/myns” and “myns”.

— The "version” tagged value is applied to the <<ApplicationSchema>> package with the default value of "1.0".
If the “version” attribute of the xsd:schema element of the top-level schema document for the GML application
schema exists and contains a non-empty value, its value replaces the default tagged value.

— The "xsdDocument" tagged value is set to the relative filename of the XML Schema document.

By default, one UML package is generated for each input schema document in the GML application schema,
including those directly or indirectly imported from XML namespaces other than the target namespace of the GML
application schema — except for XML Schema documents from the GML namespaces. Alternatively, a single
XML Schema document may also be split into several UML packages.

The packages are generated in the <<ApplicationSchema>> package for the GML application schema with names
that correspond to the names of the input schema documents.

The xsd:include and xsd:.import statements in each input schema document are used to determine and set the
dependencies of the packages generated in the <<Application Schema>> package.

F.2.3.3 GML object types
Every GML object type shall be mapped to a UML class.

If the object type directly or indirectly derives from gml:AbstractFeatureType, the stereotype of the class
shall be <<FeatureType>>, otherwise no stereotype shall be set.

The name of the class shall be the same as the name of the global element of the GML object type.
The class shall be abstract, if and only if the GML object type is abstract.

If the GML object type is derived from another GML object type, then the class inherits from the corresponding
superclass. If the base type is defined in the GML application schema or another imported GML application
schema, then the superclass is the class corresponding to this GML object type. If the base type is defined in the
GML namespace, then the superclass is determined by Table D.2. If the base type is listed in the third column of
that table, then the superclass is the class in the first column of the same row.

The GML properties of the GML object type shall be mapped to attributes and association roles as described in
F.2.3.9. Assign a tagged value "sequenceNumber" to all UML atiributes and association roles created in this
mapping with unique integer values in ascending order reflecting the order of the properties in the sequence of the
object type.

F.2.3.4 GML object types (imported from the GML schema)

The complex types from the GML namespace listed in the left hand column of Table D.2 shall be mapped to the
predefined UML classes implemented by the ISO geographic information standards profile of GML in the second
column of the table.

364 Copyright © 2007 Open Geospatial Cansortium, Inc. All Rights Reserved.

OGC 07-036

F.2.3.5 Basic types

The simple types from the XML Schema and GML namespace shown in the right hand column of Table D.2 shall
be mapped to the predefined UML classes implemented by the ISO geographic information standards profile of
GML in the left hand column of the table.

F.2.3.6 GML data types

Every GML data type shall be mapped to a UML class. The name of the class shall be the same as the name of
the complex type without the “Type”-suffix.

If the GML data type is derived from another GML data type (base type), then the class inherits from the
corresponding superclass.

If the properties of the GML data type are embedded in an xsd:sequence element, the stereotype of the class
shall be <<DataType>>, if they are embedded in an xsd:choice element, the stereotype of the class shall be set to

<<Union>>,

The GML properties of the GML object type shall be mapped to attributes and association roles as described in
F.2.3.9. Assign a tagged value "sequenceNumber" to all UML attributes and association roles created in this
mapping with unique integer values in ascending order reflecting the order of the properties in the sequence of the
object type.

F.2.3.7 Enumerations

A simple type defined in the GML application schema as a restriction of xsd:string with enumeration values shall
be mapped to a class with the <<Enumeration>> stereotype in the UML application schema.

The name of the class shall be the name of the simple type.

Every xsd:enumeration facet without an xsd:applnfo annotation with a child element gml:codeListValue shall
be mapped to a UML attribute with the value as the attribute name.

Every xsd:enumeration facet with an xsd:appinfo annotation with a child element gml: codelistVvalue shall be
mapped to an initial value of the UML attribute with the same name as the value of the gml:codelistValue
element. If no such UML attribute exists in the class, the facet shall be ignored.

F.2.3.8 Code lists

A simple type defined an the GML application schema as a union of an xsd:pattern restriction with the value
“other:\w{2,}" and an enumeration shall be mapped to a class with the stereotype <<CodeList>> in the UML
application schema.

The name of the class shall be the name of the simpie type.

Every xsd:enumeration facet of the enumeration without an xsd:appinfo annotation with a child element
gml :codelistValue shall be mapped to a UML attribute with the value as the attribute name.

Every xsd:enumeration facet of the enumeration with an xsd:appinfo annotation with a child element
gml : codelistValue shall be mapped to an initial value of the UML attribute with the same name as the value
of the gml : codelistValue element. If no such UML attribute exists in the class, the facet shall be ignored.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. 365

OGC 07-036

F.2.3.9 GML properties

If the type of a property element:

is a simple type or the property type of GML data type, the property shall be mapped to a UML attribute with
the corresponding type as the data type;

is a property type of a GML object type (inline and/or by-reference) whose content model is directly or
indirectly derived from gml:AbstractMemberType, the property shall be mapped to a UML association role of
a UML aggregation to the class representing the target GML object type; if the content model of the property
element contains an attribute "owns" with a fixed value of "true" (through a Schematron constraint) then the
UML aggregation shall be change to a UML composition;

is a property type of a GML object type (inline and/or by-reference), the property shall be mapped to a UML
association role of a UML association to the class representing the target GML object type, if the property
type supports only by-reference, the target GML object type shall be determined from the embedded
xsd:appInfo annotation with a child element gml : targetElement specifying the qualified element name of
the target type. The tagged value "inlineOrByReference" shall be set to "inline" for representations that allow
only an inline encoding of the property value and to "byReference" for representations that allow only a by-
reference encoding of the property value;

is a property type of a GML object type (inline and/or by-reference) whose content model is directly or
indirectly derived from gml:AbstractMetadataPropertyType, the UML attiibule or association role shall carry a
tagged value "isMetadata" with the value "true".

The name of the UML attribute or association role shall be the name of the GML property element.

The multiplicity of the UML attribute or association role shall be derived from the minOccurs and maxOccurs value
of the GML property.

If the property element has an xsd:appinfo annotation with a child element gml:reversePropertyName
embedded, then the association role shall be defined as part of the association between the two classes where
the other association role has a name equal to the value of the gml : reversePropertyName element.

F.2.3.10 Documentation

XML Schema xsd:annotation/xsd:documentation elements in GML application schemas are mapped to
“documentation” tagged values in the UML application schema.

366

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

