Home | english  | Impressum | Datenschutz | Sitemap | KIT


A note on efficient computation of privileged directions in modifier adaptation.
Singhal, M.; Marchetti, A. G.; Faulwasser, T.; Bonvin, D.
2020. Computers & chemical engineering, 132, Article No.106524. doi:10.1016/j.compchemeng.2019.106524
Modular Simulation Model for Falling Film Evaporators with Novel Approach to Manage Dominant Time-varying Transport Delays.
Schwaer, C.; Hofmann, J.; Mühlpfordt, M.; Frank, A.; Gröll, L.
2020. Computers & chemical engineering, 132, Article: 106604. doi:10.1016/j.compchemeng.2019.106604
Software Toolkit for Visualization and Process Selection for Modular Scalable Manufacturing of 3D Micro-Devices.
Scholz, S.; Elkaseer, A.; Salem, M.; Hagenmeyer, V.
2020. Information Systems Architecture and Technology: Proceedings of 40th Anniversary International Conference on Information Systems Architecture and Technology – ISAT 2019. Ed.: L. Borzemski, 160–172, Springer International Publishing, Cham. doi:10.1007/978-3-030-30440-9_16
Power Quality in Smart Distribution Systems with Electric Battery, Large Loads and PV Generation.
Munoz Ortiz, M.; Petersen, I.; Mikut, R.; Landsverk, H.; Simonsen, S. H.
2019. Proceedings of the 13th International Renewable Energy Storage Conference 2019 (IRES 2019). Ed.: C. Trimborn, 97–108
Synergy Pattern of Short Cationic Antimicrobial Peptides Against Multidrug-Resistant Pseudomonas aeruginosa [in press].
Ruden, S.; Rieder, A.; Chis Ster, I.; Schwartz, T.; Mikut, R.; Hilpert, K.
2019. Frontiers in microbiology, 10, 2740. doi:10.3389/fmicb.2019.02740
Digitale Bildverarbeitung und Tiefe Neuronale Netze in der Augenheilkunde – aktuelle Trends - Digital Image Processing and Deep Neural Networks in Ophthalmology – Current TrendsAndreas Bartschat.
Bartschat, A.; Allgeier, S.; Bohn, S.; Scherr, T.; Blessing, D.; Reichert, K.-M.; Reischl, M.; Stachs, O.; Koehler, B.; Mikut, R.
2019. Klinische Monatsblätter für Augenheilkunde. doi:10.1055/a-1008-9400
Optimal adaptive power flow linearizations: Expected error minimization using polynomial chaos expansion.
Mühlpfordt, T.; Molzahn, D. K.; Hagenmeyer, V.; Misra, S.
2019. 13th IEEE PES Power Tech (2019), Mailand, Italien, 23.–27. Juni 2019
PolyChaos.jl - An open source Julia package for polynomial chaos expansion.
Mühlpfordt, T.; Hagenmeyer, V.; Faulwasser, T.
2019, September 11. Workshop on Frontiers of Uncertainty Quantification in Fluid Dynamics (FrontUQ 2019), Pisa, Italien, 11.–13. September 2019
Machine Learning Methods for Automated Quantification of Ventricular Dimensions.
Schutera, M.; Just, S.; Gierten, J.; Mikut, R.; Reischl, M.; Pylatiuk, C.
2019, Oktober 29. Bosch AICON (AICON 2019), Renningen, Deutschland, 28.–29. Oktober 2019
Building Energy Simulations at Urban Scale Based on Standardized Data Models Using a Transparent Enrichment Process.
Geiger, A.; Benner, J.; Häfele, K.-H.; Hagenmeyer, V.
2019, September 3. 16th Building Simulations - International Conference and Exhibition (IBPSA 2019), Rom, Italien, 2.–4. September 2019